선물시장의 시스템트레이딩에서 동적시간와핑 알고리즘을 이용한 최적매매빈도의 탐색 및 거래전략의 개발

국내 정치적 사회적 경제적 요인 및 국제 정치 상황, 해외 경제 동향 등의 요인들을 비롯한 IMF이후의 금융시장 개방에 따른 외국투자자본의 유출입으로 인하여 한국 금융시장의 불확실성은 더욱 증가되었다. 특히 투자자들은 의사결정에 더 많은 혼돈을 겪게 되었고 투자 시 도움을 줄 수 있는 보다 유용한 도구들을 필요로 하게 되었다. 본 연구는 시스템 트레이딩을 이용하여 선물시장에서 거래 할 때 최적의 매매 타이밍을 알아보고 이에 적합한 전략을 알아보는 것이 목적이다. 패턴인식 알고리즘인 동적 시간 와핑 (DTW; Dynamic Time Warping) 알고리즘을 이용하여 빈도별 (10분, 30분, 60분, 일 별) 유사 패턴을 찾아내고 최적의 매매 타이밍을 분석한다. 이를 위해 주식시장의 대표적인 패턴들을 알아보고, 유사한 패턴을 보이는 기간을 DTW를 이용하여 빈도별로 분석한다. 유사한 패턴들의 검증을 위해 기술적 지표들의 개별 전략을 적용한 거래 시뮬레이션을 실시한다. 시뮬레이션 결과 대부분 30분 데이터에 적용된 전략들이 높은 수익률을 가져왔다. 【The aim of this study is to utilize system trading for making investment decisions and use technical analysis and Dynamic Time Warping (DTW) to determine similar patterns in the frequency of stock data and ascertain the optimal timing for trade. The study will examine some of the most common patterns in the futures market and use DTW in terms of their frequency (10, 30, 60 minutes, and daily) to discover similar patterns. The recognized similar patterns were verified by executing trade simulation after applying specific strategies to the technical indicators. The most profitable strategies among the set of strategies applied to common patterns were again applied to the similar patterns and the results from DTW pattern recognition were examined. The outcome produced useful information on determining the optimal timing for trade by using DTW pattern recognition through system trading, and by applying distinct strategies depending on data frequency.】