Analyzing Marketing Research Data with Incomplete Information on the Dependent Variable

The author presents the general EM algorithm for analyzing incomplete data. As a specific application of the EM algorithm, a model is proposed for analyzing incomplete data in an important class of problems in marketing research. A simple estimation procedure also is developed. The model is investigated through Monté Carlo studies as well as empirically with encouraging results. Some of the advantages and limitations of the approach are discussed.

[1]  W. Greene ON THE ASYMPTOTIC BIAS OF THE ORDINARY LEAST SQUARES ESTIMATOR OF THE TOBIT MODEL , 1981 .

[2]  Roderick J. A. Little,et al.  Consistent Regression Methods for Discriminant Analysis with Incomplete Data , 1978 .

[3]  John W. Slocum,et al.  The Influence of Career Stages on Salespeople's Job Attitudes, Work Perceptions, and Performance , 1986 .

[4]  J. Frane Some simple procedures for handling missing data in multivariate analysis , 1976 .

[5]  Barnes Discussion of the Paper , 1961, Public health papers and reports.

[6]  Naresh K. Malhotra,et al.  The Use of Linear Logit Models in Marketing Research , 1984 .

[7]  Emlyn Williams,et al.  Estimating Missing Values in Multi-Stratum Experiments , 1981 .

[8]  Jacob Cohen,et al.  Applied multiple regression/correlation analysis for the behavioral sciences , 1979 .

[9]  R. R. Hocking,et al.  The analysis of incomplete data. , 1971 .

[10]  Patricia L. Smith The Use of Analysis of Covariance to Analyse Data from Designed Experiments with Missing or Mixed‐Up Values , 1981 .

[11]  Richard Staelin,et al.  The Choice Process for Graduate Business Schools , 1978 .

[12]  Winston K. Chow,et al.  A Look at Various Estimators in Logistic Models in the Presence of Missing Values , 1979 .

[13]  W. DeSarbo,et al.  MEMD: An APL Program for Multivariate Estimation of Missing Data , 1978 .

[14]  Alexander Basilevsky,et al.  Chapter 12 – Missing Data: A Review of the Literature , 1983 .

[15]  Ramesh M. Korwar,et al.  Maximum Likelihood Estimates for a Bivariate Normal Distribution with Missing Data , 1980 .

[16]  C. Fornell,et al.  Sources of Market Pioneer Advantages in Consumer Goods Industries , 1985 .

[17]  N. Malhotra Information Load and Consumer Decision Making , 1982 .

[18]  Pradeep K. Korgaonkar,et al.  An Empirical Comparison of the Predictive Validity of Self-Explicated, Huber-Hybrid, Traditional Conjoint, and Hybrid Conjoint Models , 1983 .

[19]  Philippe Cattin,et al.  Alternative Estimation Methods for Conjoint Analysis: A Monté Carlo Study , 1981 .

[20]  J. Heckman Sample selection bias as a specification error , 1979 .

[21]  N. Laird Nonparametric Maximum Likelihood Estimation of a Mixing Distribution , 1978 .

[22]  Raymond H. Myers,et al.  Maximum Likelihood Estimation from Linear Combinations of Discrete Probability Functions , 1973 .

[23]  R. Olsen,et al.  Approximating a Truncated Normal Regression with the Method of Moments , 1980 .

[24]  R. Sundberg An iterative method for solution of the likelihood equations for incomplete data from exponential families , 1976 .

[25]  Paul E. Green,et al.  AN ALTERNATING LEAST‐SQUARES PROCEDURE FOR ESTIMATING MISSING PREFERENCE DATA IN PRODUCT‐CONCEPT TESTING* , 1986 .

[26]  F. Bass,et al.  Competition, Strategy, and Price Dynamics: A Theoretical and Empirical Investigation , 1985 .

[27]  J. Heckman The Common Structure of Statistical Models of Truncation, Sample Selection and Limited Dependent Variables and a Simple Estimator for Such Models , 1976 .

[28]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[29]  R. A. Boyles On the Convergence of the EM Algorithm , 1983 .

[30]  Paul E. Green,et al.  A Hybrid Utility Estimation Model for Conjoint Analysis , 1981 .

[31]  Neil C. Schwertman,et al.  On the analysis of incomplete growth curve data, a Monte Carlo study of two nonparametric procedures , 1981 .

[32]  Naresh K. Malhotra,et al.  A Comparison of the Predictive Validity of Procedures for Analyzing Binary Data , 1983 .

[33]  R. R. Hocking,et al.  Estimation with incomplete data: An improved computational method and the analysis of nested data , 1979 .

[34]  G. J. Hahn,et al.  A Simple Method for Regression Analysis With Censored Data , 1979 .

[35]  Jae-On Kim,et al.  The Treatment of Missing Data in Multivariate Analysis , 1977 .

[36]  P. Robinson,et al.  Parametric estimators for stationary time series with missing observations , 1981, Advances in Applied Probability.

[37]  Naresh K. Malhotra,et al.  Structural Reliability and Stability of Nonmetric Conjoint Analysis , 1982 .

[38]  Paul E. Green,et al.  On the Design of Choice Experiments Involving Multifactor Alternatives , 1974 .

[39]  Takeshi Amemiya,et al.  The Estimation of a Simultaneous-Equation Tobit Model , 1979 .

[40]  Donald R. Lehmann,et al.  A Model of Marketing Mix, Brand Switching, and Competition , 1985 .

[41]  R. Okafor Maximum likelihood estimation from incomplete data , 1987 .

[42]  Paul E. Green,et al.  Model Misspecification in Multiattribute Parameter Estimation , 1981 .

[43]  R. R. Hocking,et al.  Maximum Likelihood Estimation with Incomplete Multinomial Data , 1971 .

[44]  Naresh K. Malhotra,et al.  An Approach to the Measurement of Consumer Preferences Using Limited Information , 1986 .

[45]  Russell S. Winer,et al.  Attrition Bias in Econometric Models Estimated with Panel Data , 1983 .

[46]  Marcel G. Dagenais,et al.  Incomplete observations and simultaneous-equations models , 1976 .

[47]  H. I. Patel,et al.  Analysis of incomplete data in experiments with repeated measurements in clinicaltrials using a stochastic model , 1981 .

[48]  Carl T. Finkbeiner Estimation for the multiple factor model when data are missing , 1979 .

[49]  Richard Staelin,et al.  A proposal for handling missing data , 1975 .

[50]  J. Tobin Estimation of Relationships for Limited Dependent Variables , 1958 .

[51]  P. Green,et al.  Conjoint Analysis in Consumer Research: Issues and Outlook , 1978 .

[52]  Naresh K. Malhotra,et al.  Improving Predictive Power of Conjoint Analysis by Constrained Parameter Estimation , 1983 .

[53]  J. C. van Houwelingen,et al.  An Application of Factor Analysis With Missing Data , 1981 .