Residual strength of thermally modified Scots pine after fatigue testing in flexure

[1]  Peter Niemz,et al.  Physik des Holzes und der Holzwerkstoffe , 2016 .

[2]  H. Militz,et al.  Comparison of EMC and durability of heat treated wood from high versus low water vapour pressure reactor systems , 2015 .

[3]  I. Barboutis,et al.  INFLUENCE OF THERMAL TREATMENT ON MECHANICAL STRENGTH OF SCOTS PINE (PiNuS SylvESTR iS L.) WOOD , 2014 .

[4]  V. Kamperidou,et al.  INFLUENCE OF THERMAL TREATMENT ON MECHANICAL STRENGTH OF SCOTS PINE ( PiNuS SylvESTRiS L . ) WOOD , 2014 .

[5]  M. Boonstra,et al.  Strength properties of thermally modified softwoods and its relation to polymeric structural wood constituents , 2007, Annals of Forest Science.

[6]  Sini Metsä-Kortelainen Differences between sapwood and heartwood of thermally modified Norway spruce (Picea abies) and Scots pine (Pinus sylvestris) under water and decay exposure , 2011 .

[7]  M. Arnold Effect of moisture on the bending properties of thermally modified beech and spruce , 2010, Journal of Materials Science.

[8]  P. Niemz Investigation of chemical changes in the strucure of wood thermally modified , 2010 .

[9]  P. Niemz,et al.  INVESTIGATION OF CHEMICAL CHANGES IN THE STRUCTURE OF THERMALLY MODIFIED WOOD , 2010 .

[10]  H. Militz,et al.  Characterisation of thermally modified wood: molecular reasons for wood performance improvement , 1998, Holz als Roh- und Werkstoff.

[11]  C. Eckelman,et al.  Fatigue strength and allowable design stresses for some wood composites used in furniture , 1996, Holz als Roh- und Werkstoff.

[12]  S. Poncsák,et al.  Effect of thermal treatment on the chemical composition and mechanical properties of birch and aspen , 2008, BioResources.

[13]  L. F. Nielsen Fatigue of viscoelastic materials such as wood with overload , 2008 .

[14]  H. Militz Processes and Properties of Thermally Modified Wood Manufactured in Europe , 2008 .

[15]  M. Boonstra,et al.  A two-stage thermal modification of wood , 2008 .

[16]  A. Rapp,et al.  Durability of thermally modified timber from industrial-scale processes in different use classes: Results from laboratory and field tests , 2007 .

[17]  G. Rose Das mechanische Verhalten des Kiefernholzes bei dynamischer Dauerbeanspruchung in Abhängigkeit von Belastungsart, Belastungsgröße, Feuchtigkeit und Temperatur , 1965, Holz als Roh- und Werkstoff.

[18]  Franz Kollmann,et al.  Zeitfestigkeit und Dauerfestigkeit von Holzspanplatten , 1961, Holz als Roh- und Werkstoff.

[19]  Werner Gillwald Beitrag zur Bestimmung der Formänderung von Holz unter schwingender Beanspruchung , 1961, Holz als Roh- und Werkstoff.

[20]  M. Yamasaki,et al.  Fatigue of structural plywood under cyclic shear through thickness I: fatigue process and failure criterion based on strain energy , 2007, Journal of Wood Science.

[21]  H. Pereira,et al.  Influence of steam heating on the properties of pine (Pinus pinaster) and eucalypt (Eucalyptus globulus) wood , 2007, Wood Science and Technology.

[22]  U. Westermark,et al.  Determination of formic-acid and acetic acid concentrations formed during hydrothermal treatment of birch wood and its relation to colour, strength and hardness , 2006, Wood Science and Technology.

[23]  Mohamed Bouazara,et al.  Effect of high temperature treatment on the mechanical properties of birch (Betula papyrifera) , 2006, Wood Science and Technology.

[24]  M. Hakkou,et al.  Investigations of the reasons for fungal durability of heat-treated beech wood , 2006 .

[25]  Hanne Wikberg,et al.  Characterisation of thermally modified hard- and softwoods by 13C CPMAS NMR , 2004 .

[26]  Nobuyuki Hirai,et al.  Changes of crystallinity in wood cellulose by heat treatment under dried and moist conditions , 2000, Journal of Wood Science.

[27]  T. Okano,et al.  Bending strength and toughness of heat-treated wood , 2000, Journal of Wood Science.

[28]  P. Bekhta,et al.  Effect of High Temperature on the Change in Color, Dimensional Stability and Mechanical Properties of Spruce Wood , 2003 .

[29]  M. Gong,et al.  Effect of Waveform and Loading Sequence on Low-Cycle Compressive Fatigue Life of Spruce , 2003 .

[30]  Meng Gong,et al.  Fracture and fatigue in wood , 2003 .

[31]  S. Maunu,et al.  Magnetic Resonance Studies of Thermally Modified Wood , 2002 .

[32]  C. O. Clorius Fatigue in Wood: An investigation in tension perpendicular to the grain , 2001 .

[33]  A. Pizzi,et al.  Heat-treated timber: potentially toxic byproducts presence and extent of wood cell wall degradation , 2000, Holz als Roh- und Werkstoff.

[34]  L. Damkilde,et al.  Compressive fatigue in wood , 2000, Wood Science and Technology.

[35]  H. Militz,et al.  2 Heat treatment of wood by the PLATO-Process , 2000 .

[36]  R. Ross,et al.  Energy Criterion for Fatigue Strength of Wood Structural Members , 1996 .

[37]  E. L. Schaffer,et al.  Reaction Rate Model for the Fatigue Strength of Wood , 1994 .

[38]  M. Ansell,et al.  Fatigue properties of wood in tension, compression and shear , 1991 .

[39]  E. Koukios,et al.  Dilute acid hydrolysis of lignocellulosics: An application to medium consistency suspensions of hardwoods using a plug flow reactor , 1990 .

[40]  David A. Spera,et al.  Structural properties of laminated Douglas fir/epoxy composite material , 1990 .

[41]  S. N. Marsoem Mechanical responses of wood to repeated loading , 1987 .

[42]  Shigehiko Suzuki,et al.  Fatigue Behavior of Particleboard in Tension Perpendicular to the Surface I. : Effect of resin type , 1984 .

[43]  D. Fengel,et al.  Wood: Chemistry, Ultrastructure, Reactions , 1983 .

[44]  B. Dobraszczyk An investigation into the fracture and fatigue behaviour of wood , 1983 .

[45]  George H. Kyanka,et al.  Fatigue properties of wood and wood composites , 1980 .

[46]  W C Lewis,et al.  FATIGUE RESISTANCE OF QUARTER-SCALE BRIDGE STRINGERS IN FLEXURE AND SHEAR , 1962 .

[47]  Alfred J. Stamm,et al.  Thermal Degradation of Wood and Cellulose , 1956 .

[48]  F. Kollmann,et al.  Technologie des Holzes und der Holzwerkstoffe , 1955 .