Residual strength of thermally modified Scots pine after fatigue testing in flexure
暂无分享,去创建一个
[1] Peter Niemz,et al. Physik des Holzes und der Holzwerkstoffe , 2016 .
[2] H. Militz,et al. Comparison of EMC and durability of heat treated wood from high versus low water vapour pressure reactor systems , 2015 .
[3] I. Barboutis,et al. INFLUENCE OF THERMAL TREATMENT ON MECHANICAL STRENGTH OF SCOTS PINE (PiNuS SylvESTR iS L.) WOOD , 2014 .
[4] V. Kamperidou,et al. INFLUENCE OF THERMAL TREATMENT ON MECHANICAL STRENGTH OF SCOTS PINE ( PiNuS SylvESTRiS L . ) WOOD , 2014 .
[5] M. Boonstra,et al. Strength properties of thermally modified softwoods and its relation to polymeric structural wood constituents , 2007, Annals of Forest Science.
[6] Sini Metsä-Kortelainen. Differences between sapwood and heartwood of thermally modified Norway spruce (Picea abies) and Scots pine (Pinus sylvestris) under water and decay exposure , 2011 .
[7] M. Arnold. Effect of moisture on the bending properties of thermally modified beech and spruce , 2010, Journal of Materials Science.
[8] P. Niemz. Investigation of chemical changes in the strucure of wood thermally modified , 2010 .
[9] P. Niemz,et al. INVESTIGATION OF CHEMICAL CHANGES IN THE STRUCTURE OF THERMALLY MODIFIED WOOD , 2010 .
[10] H. Militz,et al. Characterisation of thermally modified wood: molecular reasons for wood performance improvement , 1998, Holz als Roh- und Werkstoff.
[11] C. Eckelman,et al. Fatigue strength and allowable design stresses for some wood composites used in furniture , 1996, Holz als Roh- und Werkstoff.
[12] S. Poncsák,et al. Effect of thermal treatment on the chemical composition and mechanical properties of birch and aspen , 2008, BioResources.
[13] L. F. Nielsen. Fatigue of viscoelastic materials such as wood with overload , 2008 .
[14] H. Militz. Processes and Properties of Thermally Modified Wood Manufactured in Europe , 2008 .
[15] M. Boonstra,et al. A two-stage thermal modification of wood , 2008 .
[16] A. Rapp,et al. Durability of thermally modified timber from industrial-scale processes in different use classes: Results from laboratory and field tests , 2007 .
[17] G. Rose. Das mechanische Verhalten des Kiefernholzes bei dynamischer Dauerbeanspruchung in Abhängigkeit von Belastungsart, Belastungsgröße, Feuchtigkeit und Temperatur , 1965, Holz als Roh- und Werkstoff.
[18] Franz Kollmann,et al. Zeitfestigkeit und Dauerfestigkeit von Holzspanplatten , 1961, Holz als Roh- und Werkstoff.
[19] Werner Gillwald. Beitrag zur Bestimmung der Formänderung von Holz unter schwingender Beanspruchung , 1961, Holz als Roh- und Werkstoff.
[20] M. Yamasaki,et al. Fatigue of structural plywood under cyclic shear through thickness I: fatigue process and failure criterion based on strain energy , 2007, Journal of Wood Science.
[21] H. Pereira,et al. Influence of steam heating on the properties of pine (Pinus pinaster) and eucalypt (Eucalyptus globulus) wood , 2007, Wood Science and Technology.
[22] U. Westermark,et al. Determination of formic-acid and acetic acid concentrations formed during hydrothermal treatment of birch wood and its relation to colour, strength and hardness , 2006, Wood Science and Technology.
[23] Mohamed Bouazara,et al. Effect of high temperature treatment on the mechanical properties of birch (Betula papyrifera) , 2006, Wood Science and Technology.
[24] M. Hakkou,et al. Investigations of the reasons for fungal durability of heat-treated beech wood , 2006 .
[25] Hanne Wikberg,et al. Characterisation of thermally modified hard- and softwoods by 13C CPMAS NMR , 2004 .
[26] Nobuyuki Hirai,et al. Changes of crystallinity in wood cellulose by heat treatment under dried and moist conditions , 2000, Journal of Wood Science.
[27] T. Okano,et al. Bending strength and toughness of heat-treated wood , 2000, Journal of Wood Science.
[28] P. Bekhta,et al. Effect of High Temperature on the Change in Color, Dimensional Stability and Mechanical Properties of Spruce Wood , 2003 .
[29] M. Gong,et al. Effect of Waveform and Loading Sequence on Low-Cycle Compressive Fatigue Life of Spruce , 2003 .
[30] Meng Gong,et al. Fracture and fatigue in wood , 2003 .
[31] S. Maunu,et al. Magnetic Resonance Studies of Thermally Modified Wood , 2002 .
[32] C. O. Clorius. Fatigue in Wood: An investigation in tension perpendicular to the grain , 2001 .
[33] A. Pizzi,et al. Heat-treated timber: potentially toxic byproducts presence and extent of wood cell wall degradation , 2000, Holz als Roh- und Werkstoff.
[34] L. Damkilde,et al. Compressive fatigue in wood , 2000, Wood Science and Technology.
[35] H. Militz,et al. 2 Heat treatment of wood by the PLATO-Process , 2000 .
[36] R. Ross,et al. Energy Criterion for Fatigue Strength of Wood Structural Members , 1996 .
[37] E. L. Schaffer,et al. Reaction Rate Model for the Fatigue Strength of Wood , 1994 .
[38] M. Ansell,et al. Fatigue properties of wood in tension, compression and shear , 1991 .
[39] E. Koukios,et al. Dilute acid hydrolysis of lignocellulosics: An application to medium consistency suspensions of hardwoods using a plug flow reactor , 1990 .
[40] David A. Spera,et al. Structural properties of laminated Douglas fir/epoxy composite material , 1990 .
[41] S. N. Marsoem. Mechanical responses of wood to repeated loading , 1987 .
[42] Shigehiko Suzuki,et al. Fatigue Behavior of Particleboard in Tension Perpendicular to the Surface I. : Effect of resin type , 1984 .
[43] D. Fengel,et al. Wood: Chemistry, Ultrastructure, Reactions , 1983 .
[44] B. Dobraszczyk. An investigation into the fracture and fatigue behaviour of wood , 1983 .
[45] George H. Kyanka,et al. Fatigue properties of wood and wood composites , 1980 .
[46] W C Lewis,et al. FATIGUE RESISTANCE OF QUARTER-SCALE BRIDGE STRINGERS IN FLEXURE AND SHEAR , 1962 .
[47] Alfred J. Stamm,et al. Thermal Degradation of Wood and Cellulose , 1956 .
[48] F. Kollmann,et al. Technologie des Holzes und der Holzwerkstoffe , 1955 .