Towards a Learning Theory of Causation
暂无分享,去创建一个
David Lopez-Paz | Krikamol Muandet | Bernhard Schölkopf | Ilya Tolstikhin | B. Schölkopf | I. Tolstikhin | David Lopez-Paz | Krikamol Muandet
[1] H. Reichenbach,et al. The Direction of Time , 1959 .
[2] M. Talagrand,et al. Probability in Banach Spaces: Isoperimetry and Processes , 1991 .
[3] P. Spirtes,et al. Causation, prediction, and search , 1993 .
[4] Vladimir Vapnik,et al. Statistical learning theory , 1998 .
[5] V. Koltchinskii,et al. Rademacher Processes and Bounding the Risk of Function Learning , 2004, math/0405338.
[6] J. Pearl. Causality: Models, Reasoning and Inference , 2000 .
[7] Peter L. Bartlett,et al. Rademacher and Gaussian Complexities: Risk Bounds and Structural Results , 2003, J. Mach. Learn. Res..
[8] Bernhard Schölkopf,et al. Learning with kernels , 2001 .
[9] Tony Jebara,et al. Probability Product Kernels , 2004, J. Mach. Learn. Res..
[10] Matthias Hein,et al. Hilbertian Metrics and Positive Definite Kernels on Probability Measures , 2005, AISTATS.
[11] P. Bartlett,et al. Local Rademacher complexities , 2005, math/0508275.
[12] S. Boucheron,et al. Theory of classification : a survey of some recent advances , 2005 .
[13] Kenji Fukumizu,et al. Semigroup Kernels on Measures , 2005, J. Mach. Learn. Res..
[14] Michael I. Jordan,et al. Convexity, Classification, and Risk Bounds , 2006 .
[15] Andreas Maurer,et al. The Rademacher Complexity of Linear Transformation Classes , 2006, COLT.
[16] Aapo Hyvärinen,et al. A Linear Non-Gaussian Acyclic Model for Causal Discovery , 2006, J. Mach. Learn. Res..
[17] Le Song,et al. A Hilbert Space Embedding for Distributions , 2007, Discovery Science.
[18] Benjamin Recht,et al. Random Features for Large-Scale Kernel Machines , 2007, NIPS.
[19] Bernhard Schölkopf,et al. Nonlinear causal discovery with additive noise models , 2008, NIPS.
[20] Benjamin Recht,et al. Weighted Sums of Random Kitchen Sinks: Replacing minimization with randomization in learning , 2008, NIPS.
[21] Aapo Hyvärinen,et al. On the Identifiability of the Post-Nonlinear Causal Model , 2009, UAI.
[22] Bernhard Schölkopf,et al. Detecting the direction of causal time series , 2009, ICML '09.
[23] Eric P. Xing,et al. Nonextensive Information Theoretic Kernels on Measures , 2009, J. Mach. Learn. Res..
[24] Bernhard Schölkopf,et al. Inferring deterministic causal relations , 2010, UAI.
[25] Bernhard Schölkopf,et al. Probabilistic latent variable models for distinguishing between cause and effect , 2010, NIPS.
[26] Bernhard Schölkopf,et al. Hilbert Space Embeddings and Metrics on Probability Measures , 2009, J. Mach. Learn. Res..
[27] V. Koltchinskii,et al. Oracle inequalities in empirical risk minimization and sparse recovery problems , 2011 .
[28] Bernhard Schölkopf,et al. Information-geometric approach to inferring causal directions , 2012, Artif. Intell..
[29] Bernhard Schölkopf,et al. Learning from Distributions via Support Measure Machines , 2012, NIPS.
[30] Bernhard Schölkopf,et al. On causal and anticausal learning , 2012, ICML.
[31] Bernhard Schölkopf,et al. Causal discovery with continuous additive noise models , 2013, J. Mach. Learn. Res..
[32] Bernhard Schölkopf,et al. Consistency of Causal Inference under the Additive Noise Model , 2013, ICML.
[33] Bernhard Schölkopf,et al. Distinguishing Cause from Effect Using Observational Data: Methods and Benchmarks , 2014, J. Mach. Learn. Res..
[34] Arthur Gretton,et al. Learning Theory for Distribution Regression , 2014, J. Mach. Learn. Res..