Physiological consequences of abnormal connectivity in a developmental epilepsy

Many forms of epilepsy are associated with aberrant neuronal connections, but the relationship between such pathological connectivity and the underlying physiological predisposition to seizures is unclear. We sought to characterize the cortical excitability profile of a developmental form of epilepsy known to have structural and functional connectivity abnormalities.

[1]  S. Rossi,et al.  Safety, ethical considerations, and application guidelines for the use of transcranial magnetic stimulation in clinical practice and research , 2009, Clinical Neurophysiology.

[2]  F Andermann,et al.  Periventricular and subcortical nodular heterotopia. A study of 33 patients. , 1995, Brain : a journal of neurology.

[3]  A J Barkovich,et al.  Gray matter heterotopias: MR characteristics and correlation with developmental and neurologic manifestations. , 1992, Radiology.

[4]  R. Buckner,et al.  Efficacy of Transcranial Magnetic Stimulation Targets for Depression Is Related to Intrinsic Functional Connectivity with the Subgenual Cingulate , 2012, Biological Psychiatry.

[5]  Jean Gotman,et al.  The role of periventricular nodular heterotopia in epileptogenesis. , 2005, Brain : a journal of neurology.

[6]  R. J. Ilmoniemi,et al.  Instrumentation for the measurement of electric brain responses to transcranial magnetic stimulation , 1999, Medical & Biological Engineering & Computing.

[7]  Alan Lai,et al.  The cortical excitability profile of temporal lobe epilepsy , 2013, Epilepsia.

[8]  D. Prince,et al.  Targets for preventing epilepsy following cortical injury , 2011, Neuroscience Letters.

[9]  J. Gabrieli,et al.  Hyperactivity and hyperconnectivity of the default network in schizophrenia and in first-degree relatives of persons with schizophrenia , 2009, Proceedings of the National Academy of Sciences.

[10]  P. Rossini,et al.  Non-invasive electrical and magnetic stimulation of the brain, spinal cord and roots: basic principles and procedures for routine clinical application. Report of an IFCN committee. , 1994, Electroencephalography and clinical neurophysiology.

[11]  Arnaud Delorme,et al.  EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis , 2004, Journal of Neuroscience Methods.

[12]  Graeme D. Jackson,et al.  Functional MRI interactions between dysplastic nodules and overlying cortex in periventricular nodular heterotopia , 2010, Epilepsy & Behavior.

[13]  S. Spencer Neural Networks in Human Epilepsy: Evidence of and Implications for Treatment , 2002, Epilepsia.

[14]  M. Hallett Transcranial Magnetic Stimulation: A Primer , 2007, Neuron.

[15]  C. Walsh,et al.  Reading impairment in the neuronal migration disorder of periventricular nodular heterotopia , 2005, Neurology.

[16]  Seppo Kähkönen,et al.  The effect of stimulus intensity on brain responses evoked by transcranial magnetic stimulation , 2004, Human brain mapping.

[17]  Joanna A. Christodoulou,et al.  Abnormal structural and functional brain connectivity in gray matter heterotopia , 2012, Epilepsia.

[18]  Risto J. Ilmoniemi,et al.  Distinct differences in cortical reactivity of motor and prefrontal cortices to magnetic stimulation , 2004, Clinical Neurophysiology.

[19]  R. Ilmoniemi,et al.  EEG minimum-norm estimation compared with MEG dipole fitting in the localization of somatosensory sources at S1 , 2004, Clinical Neurophysiology.

[20]  Ulf Ziemann,et al.  TMS-EEG Signatures of GABAergic Neurotransmission in the Human Cortex , 2014, The Journal of Neuroscience.

[21]  A. Rotenberg Prospects for Clinical Applications of Transcranial Magnetic Stimulation and Real-Time EEG in Epilepsy , 2009, Brain Topography.

[22]  Leonardo Bonilha,et al.  Medial temporal lobe epilepsy is associated with neuronal fibre loss and paradoxical increase in structural connectivity of limbic structures , 2012, Journal of Neurology, Neurosurgery & Psychiatry.

[23]  C. Rorden,et al.  Stereotaxic display of brain lesions. , 2000, Behavioural neurology.

[24]  F. Bartolomei,et al.  Imaging structural and functional connectivity: towards a unified definition of human brain organization? , 2008, Current opinion in neurology.

[25]  Liang Qiao,et al.  TMS: A Tailored Method of Stimulation for Refractory Focal Epilepsy? , 2013, Epilepsy currents.

[26]  Mark Newton,et al.  Changes in cortical excitability differentiate generalized and focal epilepsy , 2007, Annals of neurology.

[27]  Alvaro Pascual-Leone,et al.  Intracranial measurement of current densities induced by transcranial magnetic stimulation in the human brain , 2004, Neuroscience Letters.

[28]  A. Friedman,et al.  Seizure onset from periventricular nodular heterotopias , 1998, Neurology.

[29]  Thomas T. Liu,et al.  A component based noise correction method (CompCor) for BOLD and perfusion based fMRI , 2007, NeuroImage.

[30]  Joanna A. Christodoulou,et al.  Integration of gray matter nodules into functional cortical circuits in periventricular heterotopia , 2013, Epilepsy & Behavior.

[31]  L Tassi,et al.  Electroclinical, MRI and neuropathological study of 10 patients with nodular heterotopia, with surgical outcomes. , 2004, Brain : a journal of neurology.

[32]  D. Lehmann,et al.  Reference-free identification of components of checkerboard-evoked multichannel potential fields. , 1980, Electroencephalography and clinical neurophysiology.

[33]  David M. Groppe,et al.  Mass univariate analysis of event-related brain potentials/fields I: a critical tutorial review. , 2011, Psychophysiology.

[34]  Xiaoming Jin,et al.  Enhanced Excitatory Synaptic Connectivity in Layer V Pyramidal Neurons of Chronically Injured Epileptogenic Neocortex in Rats , 2006, The Journal of Neuroscience.

[35]  M. Hämäläinen,et al.  Realistic conductivity geometry model of the human head for interpretation of neuromagnetic data , 1989, IEEE Transactions on Biomedical Engineering.

[36]  Antonio Valentin,et al.  Late EEG responses triggered by transcranial magnetic stimulation (TMS) in the evaluation of focal epilepsy , 2008, Epilepsia.

[37]  D Alsop,et al.  A structural basis for reading fluency: White matter defects in a genetic brain malformation , 2007, Neurology.

[38]  Martin Luessi,et al.  MEG and EEG data analysis with MNE-Python , 2013, Front. Neuroinform..

[39]  Gregor Thut,et al.  A randomized clinical trial of repetitive transcranial magnetic stimulation in patients with refractory epilepsy , 2006, Annals of neurology.

[40]  H. Scharfman,et al.  The neurobiology of epilepsy , 2007, Current neurology and neuroscience reports.

[41]  Nigel C Rogasch,et al.  Assessing cortical network properties using TMS–EEG , 2013, Human brain mapping.

[42]  Y. Benjamini,et al.  Controlling the false discovery rate: a practical and powerful approach to multiple testing , 1995 .

[43]  John M Stern,et al.  Connectomics and epilepsy. , 2013, Current opinion in neurology.

[44]  Alan Lai,et al.  Cortical Hyperexcitability: A New Biomarker in Generalized Epilepsy Syndromes , 2013 .

[45]  G. Battaglia,et al.  Periventricular nodular heterotopia. , 2008, Handbook of clinical neurology.

[46]  Á. Pascual-Leone,et al.  Transcranial magnetic stimulation in neurology , 2003, The Lancet Neurology.

[47]  Z. Daskalakis,et al.  New Targets for rTMS in Depression: A Review of Convergent Evidence , 2013, Brain Stimulation.

[48]  N. Bornstein,et al.  Post-stroke seizures. , 2009, Handbook of clinical neurology.

[49]  F. Dubeau,et al.  Periventricular nodular heterotopia and intractable temporal lobe epilepsy: Poor outcome after temporal lobe resection , 1997, Annals of neurology.

[50]  Graeme D Jackson,et al.  Predicting seizure control: Cortical excitability and antiepileptic medication , 2010, Annals of neurology.

[51]  Xiaoming Jin,et al.  Epilepsy following cortical injury: Cellular and molecular mechanisms as targets for potential prophylaxis , 2009, Epilepsia.

[52]  Esa Mervaala,et al.  TMS-EEG reveals impaired intracortical interactions and coherence in Unverricht-Lundborg type progressive myoclonus epilepsy (EPM1) , 2013, Epilepsy Research.

[53]  M. Greicius Resting-state functional connectivity in neuropsychiatric disorders , 2008, Current opinion in neurology.

[54]  Maurizio Corbetta,et al.  The human brain is intrinsically organized into dynamic, anticorrelated functional networks. , 2005, Proceedings of the National Academy of Sciences of the United States of America.