Univariate parameterization for global optimization of mixed-integer polynomial problems

This paper presents a new relaxation technique to globally optimize mixed-integer polynomial programming problems that arise in many engineering and management contexts. Using a bilinear term as the basic building block, the underlying idea involves the discretization of one of the variables up to a chosen accuracy level (Teles, J.P., Castro, P.M., Matos, H.A. (2013). Multiparametric disaggregation technique for global optimization of polynomial programming problems. J. Glob. Optim. 55, 227–251), by means of a radix-based numeric representation system, coupled with a residual variable to effectively make its domain continuous. Binary variables are added to the formulation to choose the appropriate digit for each position together with new sets of continuous variables and constraints leading to the transformation of the original mixed-integer non-linear problem into a larger one of the mixed-integer linear programming type. The new underestimation approach can be made as tight as desired and is shown capable of providing considerably better lower bounds than a widely used global optimization solver for a specific class of design problems involving bilinear terms.

[1]  M. Kojima,et al.  B-411 Sums of Squares and Semidefinite Programming Relaxations for Polynomial Optimization Problems with Structured Sparsity , 2004 .

[2]  C. Adjiman,et al.  Global optimization of mixed‐integer nonlinear problems , 2000 .

[3]  R. Horst,et al.  Global Optimization: Deterministic Approaches , 1992 .

[4]  James W. Chrissis,et al.  A Hybrid Algorithm for Solving Polynomial Zero-One Mathematical Programming Problems , 1990 .

[5]  P. Parrilo An explicit construction of distinguished representations of polynomials nonnegative over finite sets , 2002 .

[6]  Masakazu Muramatsu,et al.  Sums of Squares and Semidefinite Programming Relaxations for Polynomial Optimization Problems with Structured Sparsity , 2004 .

[7]  Hanif D. Sherali,et al.  A global optimization algorithm for polynomial programming problems using a Reformulation-Linearization Technique , 1992, J. Glob. Optim..

[8]  James C. T. Mao,et al.  An Extension of Lawler and Bell's Method of Discrete Optimization with Examples from Capital Budgeting , 1968 .

[9]  Lawrence J. Watters Letter to the Editor - Reduction of Integer Polynomial Programming Problems to Zero-One Linear Programming Problems , 1967, Oper. Res..

[10]  Warren P. Adams,et al.  A Reformulation-Linearization Technique for Solving Discrete and Continuous Nonconvex Problems , 1998 .

[11]  Jun Wang,et al.  A revised Taha's algorithm for polynomial 0-1 programming , 2007 .

[12]  Hanif D. Sherali,et al.  A Hierarchy of Relaxations and Convex Hull Characterizations for Mixed-integer Zero-one Programming Problems , 1994, Discret. Appl. Math..

[13]  Daniel Granot,et al.  An accelerated covering relaxation algorithm for solving 0–1 positive polynomial programs , 1982, Math. Program..

[14]  Pedro M. Castro,et al.  Multi-parametric disaggregation technique for global optimization of polynomial programming problems , 2013, J. Glob. Optim..

[15]  Jean B. Lasserre,et al.  Polynomial Programming: LP-Relaxations Also Converge , 2005, SIAM J. Optim..

[16]  Alexander Schrijver,et al.  Reduction of symmetric semidefinite programs using the regular $$\ast$$-representation , 2007, Math. Program..

[17]  Panos M. Pardalos,et al.  A Collection of Test Problems for Constrained Global Optimization Algorithms , 1990, Lecture Notes in Computer Science.

[18]  Hanif D. Sherali,et al.  On Solving Polynomial, Factorable, and Black-Box Optimization Problems Using the RLT Methodology , 2005 .

[19]  Warren P. Adams,et al.  A hierarchy of relaxation between the continuous and convex hull representations , 1990 .

[20]  Christodoulos A. Floudas,et al.  A Global Optimization , 1992 .

[21]  C. Floudas Handbook of Test Problems in Local and Global Optimization , 1999 .

[22]  Pedro M. Castro,et al.  Global optimization of water networks design using multiparametric disaggregation , 2012, Comput. Chem. Eng..

[23]  Hanif D. Sherali,et al.  Global optimization of nonconvex factorable programming problems , 2001, Math. Program..

[24]  Pedro M. Castro,et al.  MILP-based initialization strategies for the optimal design of water-using networks , 2009 .

[25]  Klaus Schittkowski,et al.  Test examples for nonlinear programming codes , 1980 .

[26]  Tapio Westerlund,et al.  Global Optimization of Mixed-Integer Signomial Programming Problems , 2012 .

[27]  Hanif D. Sherali,et al.  On Tightening the Relaxations of Miller-Tucker-Zemlin Formulations for Asymmetric Traveling Salesman Problems , 2002, Oper. Res..

[28]  Xiaoling Sun,et al.  Nonlinear Integer Programming , 2006 .

[29]  Han-Lin Li,et al.  An approximate approach of global optimization for polynomial programming problems , 1998, Eur. J. Oper. Res..

[30]  Hanif D. Sherali,et al.  Linearization Strategies for a Class of Zero-One Mixed Integer Programming Problems , 1990, Oper. Res..

[31]  Fred W. Glover,et al.  Technical Note - Converting the 0-1 Polynomial Programming Problem to a 0-1 Linear Program , 1974, Oper. Res..

[32]  Etienne de Klerk,et al.  Exploiting special structure in semidefinite programming: A survey of theory and applications , 2010, Eur. J. Oper. Res..

[33]  Fred W. Glover,et al.  The Generalized Lattice-Point Problem , 1973, Oper. Res..

[34]  Tapio Westerlund,et al.  Convex underestimation strategies for signomial functions , 2009, Optim. Methods Softw..

[35]  A. Neumaier,et al.  A global optimization method, αBB, for general twice-differentiable constrained NLPs — I. Theoretical advances , 1998 .

[36]  Wenxing Zhu,et al.  A provable better Branch and Bound method for a nonconvex integer quadratic programming problem , 2005, J. Comput. Syst. Sci..

[37]  A. Alan B. Pritsker,et al.  Multiproject Scheduling with Limited Resources , 1968 .

[38]  Fred W. Glover,et al.  Further Reduction of Zero-One Polynomial Programming Problems to Zero-One linear Programming Problems , 1973, Oper. Res..

[39]  Bai Fan Global Optimization of Signomial Mixed-integer Nonlinear Programming Problems with Free Variables , 2014 .

[40]  M. Rao Cluster Analysis and Mathematical Programming , 1971 .

[41]  M. Natesan Pseudo-Boolean Programming for Bivalent Optimization , 1973 .

[42]  Han-Lin Li,et al.  A GLOBAL APPROACH FOR NONLINEAR MIXED DISCRETE PROGRAMMING IN DESIGN OPTIMIZATION , 1993 .

[43]  T. Westerlund,et al.  Convexification of different classes of non-convex MINLP problems , 1999 .

[44]  Dan J. Laughhunn,et al.  Capital Expenditure Programming and Some Alternative Approaches to Risk , 1971 .

[45]  Garth P. McCormick,et al.  Computability of global solutions to factorable nonconvex programs: Part I — Convex underestimating problems , 1976, Math. Program..

[46]  Hanif D. Sherali,et al.  Global Optimization of Nonconvex Polynomial Programming Problems Having Rational Exponents , 1998, J. Glob. Optim..

[47]  Nikolaos V. Sahinidis,et al.  A polyhedral branch-and-cut approach to global optimization , 2005, Math. Program..

[48]  Warren P. Adams,et al.  A Tight Linearization and an Algorithm for Zero-One Quadratic Programming Problems , 1986 .

[49]  Joakim Westerlund,et al.  Some transformation techniques with applications in global optimization , 2009, J. Glob. Optim..

[50]  Hanif D. Sherali,et al.  New reformulation linearization/convexification relaxations for univariate and multivariate polynomial programming problems , 1997, Oper. Res. Lett..

[51]  Guy L. Curry,et al.  A Dynamic Programming Algorithm for Facility Location and Allocation , 1969 .

[52]  Marius Sinclair,et al.  An exact penalty function approach for nonlinear integer programming problems , 1986 .

[53]  Masakazu Muramatsu,et al.  SparsePOP: a Sparse Semidefinite Programming Relaxation of Polynomial Optimization Problems , 2005 .

[54]  N. Z. Shor Class of global minimum bounds of polynomial functions , 1987 .

[55]  Hanif D. Sherali,et al.  Mixed-integer bilinear programming problems , 1993, Math. Program..

[56]  Klaus Schittkowski,et al.  More test examples for nonlinear programming codes , 1981 .

[57]  Pierre Hansen,et al.  Constrained Nonlinear 0-1 Programming , 1989 .

[58]  Willard I. Zangwill,et al.  Media Selection by Decision Programming , 1976 .

[59]  Clarence Zener,et al.  Geometric Programming , 1974 .

[60]  Pierre Hansen,et al.  State-of-the-Art Survey - Constrained Nonlinear 0-1 Programming , 1993, INFORMS J. Comput..

[61]  Hanif D. Sherali,et al.  A Hierarchy of Relaxations Between the Continuous and Convex Hull Representations for Zero-One Programming Problems , 1990, SIAM J. Discret. Math..

[62]  James Demmel,et al.  Sparse SOS Relaxations for Minimizing Functions that are Summations of Small Polynomials , 2008, SIAM J. Optim..

[63]  James Demmel,et al.  Minimizing Polynomials via Sum of Squares over the Gradient Ideal , 2004, Math. Program..

[64]  Peter L. Hammer,et al.  Pseudo-Boolean Programming , 1969, Oper. Res..

[65]  Masakazu Kojima,et al.  Sparsity in sums of squares of polynomials , 2005, Math. Program..

[66]  Pedro M. Castro,et al.  Global optimization of bilinear programs with a multiparametric disaggregation technique , 2013, Journal of Global Optimization.

[67]  Jean B. Lasserre,et al.  Global Optimization with Polynomials and the Problem of Moments , 2000, SIAM J. Optim..

[68]  E. L. Lawler,et al.  A Method for Solving Discrete Optimization Problems , 1966, Oper. Res..

[69]  Masakazu Muramatsu,et al.  A note on sparse SOS and SDP relaxations for polynomial optimization problems over symmetric cones , 2009, Comput. Optim. Appl..

[70]  Y. Nesterov Structure of non-negative polynomials and optimization problems , 1997 .

[71]  Javier Peña,et al.  Exploiting equalities in polynomial programming , 2008, Oper. Res. Lett..