Listerin-Dependent Nascent Protein Ubiquitination Relies on Ribosome Subunit Dissociation

[1]  M. Fromont-Racine,et al.  Cdc48-associated complex bound to 60S particles is required for the clearance of aberrant translation products , 2013, Proceedings of the National Academy of Sciences.

[2]  R. Deshaies,et al.  Cdc48/p97 promotes degradation of aberrant nascent polypeptides bound to the ribosome , 2013, eLife.

[3]  Adam Frost,et al.  A Ribosome-Bound Quality Control Complex Triggers Degradation of Nascent Peptides and Signals Translation Stress , 2012, Cell.

[4]  R. Green,et al.  Translation drives mRNA quality control , 2012, Nature Structural &Molecular Biology.

[5]  T. Inada,et al.  Dom34:hbs1 plays a general role in quality-control systems by dissociation of a stalled ribosome at the 3' end of aberrant mRNA. , 2012, Molecular cell.

[6]  Stephan Wickles,et al.  Structural basis of highly conserved ribosome recycling in eukaryotes and archaea , 2012, Nature.

[7]  R. Green,et al.  Kinetic analysis reveals the ordered coupling of translation termination and ribosome recycling in yeast , 2011, Proceedings of the National Academy of Sciences.

[8]  Nicholas T. Ingolia,et al.  Ribosome Profiling of Mouse Embryonic Stem Cells Reveals the Complexity and Dynamics of Mammalian Proteomes , 2011, Cell.

[9]  R. Hegde,et al.  Protein Targeting and Degradation are Coupled for Elimination of Mislocalized Proteins , 2011, Nature.

[10]  E. Villa,et al.  Structure of the no-go mRNA decay complex Dom34–Hbs1 bound to a stalled 80S ribosome , 2011, Nature Structural &Molecular Biology.

[11]  C. Hellen,et al.  Dissociation by Pelota, Hbs1 and ABCE1 of mammalian vacant 80S ribosomes and stalled elongation complexes , 2011, The EMBO journal.

[12]  B. Séraphin,et al.  Dissection of Dom34–Hbs1 reveals independent functions in two RNA quality control pathways , 2010, Nature Structural &Molecular Biology.

[13]  K. Shirahige,et al.  Receptor for activated C kinase 1 stimulates nascent polypeptide‐dependent translation arrest , 2010, EMBO reports.

[14]  R. Green,et al.  Dom34:Hbs1 Promotes Subunit Dissociation and Peptidyl-tRNA Drop-Off to Initiate No-Go Decay , 2010, Science.

[15]  C. Joazeiro,et al.  Role of a ribosome-associated E3 ubiquitin ligase in protein quality control , 2010, Nature.

[16]  L. Maquat,et al.  The Pioneer Round of Translation: Features and Functions , 2010, Cell.

[17]  R. Hegde,et al.  A Ribosome-Associating Factor Chaperones Tail-Anchored Membrane Proteins , 2010, Nature.

[18]  R. Hegde,et al.  In vitro dissection of protein translocation into the mammalian endoplasmic reticulum. , 2010, Methods in molecular biology.

[19]  C. Wilke,et al.  The evolutionary consequences of erroneous protein synthesis , 2009, Nature Reviews Genetics.

[20]  J. Weissman,et al.  Analysis of Dom34 and its function in no-go decay. , 2009, Molecular biology of the cell.

[21]  T. Inada,et al.  Nascent Peptide-dependent Translation Arrest Leads to Not4p-mediated Protein Degradation by the Proteasome* , 2009, Journal of Biological Chemistry.

[22]  Brian V. Jenkins,et al.  A mouse forward genetics screen identifies LISTERIN as an E3 ubiquitin ligase involved in neurodegeneration , 2009, Proceedings of the National Academy of Sciences.

[23]  L. Maquat,et al.  The multiple lives of NMD factors: balancing roles in gene and genome regulation , 2008, Nature Reviews Genetics.

[24]  Richard I. Morimoto,et al.  Adapting Proteostasis for Disease Intervention , 2008, Science.

[25]  Roy Parker,et al.  RNA Quality Control in Eukaryotes , 2007, Cell.

[26]  Youn-sung Kim,et al.  Structural and functional insights into Dom34, a key component of no-go mRNA decay. , 2007, Molecular cell.

[27]  R. Hegde,et al.  Identification of a Targeting Factor for Posttranslational Membrane Protein Insertion into the ER , 2007, Cell.

[28]  T. Inada,et al.  Translation of the poly(A) tail plays crucial roles in nonstop mRNA surveillance via translation repression and protein destabilization by proteasome in yeast. , 2007, Genes & development.

[29]  J. Taunton,et al.  Substrate-Specific Translocational Attenuation during ER Stress Defines a Pre-Emptive Quality Control Pathway , 2006, Cell.

[30]  R. Parker,et al.  Endonucleolytic cleavage of eukaryotic mRNAs with stalls in translation elongation , 2006, Nature.

[31]  T. Steitz,et al.  The contribution of metal ions to the structural stability of the large ribosomal subunit. , 2004, RNA.

[32]  Roy Parker,et al.  Exosome-Mediated Recognition and Degradation of mRNAs Lacking a Termination Codon , 2002, Science.

[33]  P S Kim,et al.  A thermostable 35-residue subdomain within villin headpiece. , 1996, Journal of molecular biology.

[34]  S. Jentsch,et al.  Ubiquitin‐conjugating enzymes UBC4 and UBC5 mediate selective degradation of short‐lived and abnormal proteins. , 1990, The EMBO journal.

[35]  D. Ecker,et al.  A multiubiquitin chain is confined to specific lysine in a targeted short-lived protein. , 1989, Science.

[36]  V. Lingappa,et al.  Uncoupling translocation from translation: implications for transport of proteins across membranes. , 1986, Science.

[37]  P. Mandel,et al.  Relation between aminoacyl-tRNA stability and the fixed amino acid. , 1972, Biochimica et biophysica acta.