MSS/1: Single‐Station and Single‐Event Marsquake Inversion

SEIS, the seismometer of the InSight mission, which landed on Mars on 26 November 2018, is monitoring the seismic activity of the planet. The goal of the Mars Structure Service (MSS) is to provide, as a mission product, the first average 1‐D velocity model of Mars from the recorded InSight data. Prior to the mission, methodologies have been developed and tested to allow the location of the seismic events and estimation of the radial structure, using surface waves and body waves arrival times, and receiver functions. The paper describes these validation tests and compares the performance of the different algorithms to constrain the velocity model below the InSight station and estimate the 1‐D average model over the great circle path between source and receiver. These tests were performed in the frame of a blind test, during which synthetic data were inverted. In order to propagate the data uncertainties on the output model distribution, Bayesian inversion techniques are mainly used. The limitations and strengths of the methods are assessed. The results show the potential of the MSS approach to retrieve the structure of the crust and underlying mantle. However, at this time, large quakes with clear surface waves have not yet been recorded by SEIS, which makes the estimation of the 1‐D average seismic velocity model challenging. Additional locatable events, especially at large epicentral distances, and development of new techniques to fully investigate the data, will ultimately provide more constraints on the crust and mantle of Mars.

[1]  M. Cara,et al.  Seismic Anisotropy in the Earth , 1991 .

[2]  Jiaxuan Li,et al.  Preparing for InSight: Evaluation of the Blind Test for Martian Seismicity , 2019, Seismological Research Letters.

[3]  W. Banerdt,et al.  Verifying single-station seismic approaches using Earth-based data: Preparation for data return from the InSight mission to Mars , 2015 .

[4]  A. Jambon,et al.  A simple chondritic model of Mars , 1999 .

[5]  Qingsong Li,et al.  Water undersaturated mantle plume volcanism on present‐day Mars , 2016 .

[6]  M. Sambridge Geophysical inversion with a neighbourhood algorithm—I. Searching a parameter space , 1999 .

[7]  M. Panning,et al.  The rheology and thermal history of Mars revealed by the orbital evolution of Phobos , 2019, Nature.

[8]  Y. Fei,et al.  Mineralogy of the Martian interior up to core‐mantle boundary pressures , 1997 .

[9]  D. L. Anderson,et al.  Preliminary reference earth model , 1981 .

[10]  Thorne Lay,et al.  Seismological implications of a lithospheric low seismic velocity zone in Mars , 2015 .

[11]  Véronique Dehant,et al.  Geodesy constraints on the interior structure and composition of Mars , 2011 .

[12]  D. Lange,et al.  Oceanic lithospheric S-wave velocities from the analysis of P-wave polarization at the ocean floor , 2016 .

[13]  R. Kind,et al.  Receiver functions at the stations of the German Regional Seismic Network (GRSN) , 1995 .

[14]  Simon C. Stähler,et al.  Instaseis: instant global seismograms based on a broadband waveform database , 2015 .

[15]  D. Lange,et al.  Structure of the oceanic lithosphere and upper mantle north of the Gloria Fault in the eastern mid‐Atlantic by receiver function analysis , 2017 .

[16]  Simon C. Stähler,et al.  AxiSEM: broadband 3-D seismic wavefields in axisymmetric media , 2014 .

[17]  Ralph D. Lorenz,et al.  Modeling of Ground Deformation and Shallow Surface Waves Generated by Martian Dust Devils and Perspectives for Near-Surface Structure Inversion , 2017 .

[18]  Robert W. Clayton,et al.  Source shape estimation and deconvolution of teleseismic bodywaves , 1976 .

[19]  M. Golombek,et al.  Pre-mission InSights on the Interior of Mars , 2019, Space Science Reviews.

[20]  F. Birch,et al.  The Velocity of Compressional Waves in Rocks to 10 Kilobars, Part 2 , 2013 .

[21]  B. Wood,et al.  A thermodynamic model for subsolidus equilibria in the system CaOMgOAl2O3SiO2 , 1984 .

[22]  S. Murty,et al.  Precursors of Mars: Constraints from nitrogen and oxygen isotopic compositions of martian meteorites , 2003 .

[23]  V. Dehant,et al.  The deep interior of Venus, Mars, and the Earth: A brief review and the need for planetary surface-based measurements , 2011 .

[24]  B. Banerdt,et al.  Simulations of Seismic Wave Propagation on Mars , 2017 .

[25]  Albert Tarantola,et al.  Monte Carlo sampling of solutions to inverse problems , 1995 .

[26]  Tilman Spohn,et al.  The interior structure of Mars: Implications from SNC meteorites , 1997 .

[27]  Jeroen Tromp,et al.  Planned Products of the Mars Structure Service for the InSight Mission to Mars , 2017 .

[28]  G. Ekström,et al.  A radial model of anelasticity consistent with long-period surface-wave attenuation , 1996 .

[29]  Thomas J. Owens,et al.  The TauP Toolkit: Flexible Seismic Travel-Time and Raypath Utilities , 1999 .

[30]  A. Treiman The parental magma of the Nakhla achondrite: Ultrabasic volcanism on the shergottite parent body , 1986 .

[31]  Harry Y. McSween,et al.  What we have learned about Mars from SNC meteorites , 1994 .

[32]  G. Ekström,et al.  Automated multimode phase speed measurements for high-resolution regional-scale tomography: application to North America , 2010 .

[33]  Malcolm Sambridge,et al.  Genetic algorithm inversion for receiver functions with application to crust and uppermost mantle structure , 1996 .

[34]  R. Phillips,et al.  Thermal and crustal evolution of Mars , 2002 .

[35]  G. Dreibus,et al.  Mars, a Volatile-Rich Planet , 1985 .

[36]  David E. Smith,et al.  Crustal structure of Mars from gravity and topography , 2004 .

[37]  S. Karato Geophysical constraints on the water content of the lunar mantle and its implications for the origin of the Moon , 2013 .

[38]  T. Mikesell,et al.  Methods to isolate retrograde and prograde Rayleigh-wave signals , 2019, Geophysical Journal International.

[39]  W. Menke Geophysical data analysis : discrete inverse theory , 1984 .

[40]  Amir Khan,et al.  Does the Moon possess a molten core? Probing the deep lunar interior using results from LLR and Lunar Prospector , 2004 .

[41]  G. Schubert,et al.  Subsolidus convective cooling histories of terrestrial planets , 1979 .

[42]  Charles J. Ammon,et al.  The isolation of receiver effects from teleseismic P waveforms , 1991, Bulletin of the Seismological Society of America.

[43]  D. Stevenson Mars' core and magnetism , 2001, Nature.

[44]  Michael Fehler,et al.  Seismic Wave Propagation and Scattering in the Heterogeneous Earth , 2012 .

[45]  J. Woodhouse,et al.  Amplitude, phase and path anomalies of mantle waves , 1986 .

[46]  M. Zuber,et al.  Degree-1 mantle convection and the crustal dichotomy on Mars , 2000 .

[47]  G. Farin Piecewise Cubic Interpolation , 1993 .

[48]  B. Kennett,et al.  The removal of free surface interactions from three-component seismograms , 1991 .

[49]  B. Knapmeyer‐Endrun,et al.  Moho depth across the Trans-European Suture Zone from P- and S-receiver functions , 2014 .

[50]  Barbara Romanowicz,et al.  North American lithospheric discontinuity structure imaged by Ps and Sp receiver functions , 2010 .

[51]  S. Kedar,et al.  The seismicity of Mars , 2020, Nature Geoscience.

[52]  L. Margerin,et al.  Scattering attenuation profile of the Moon: Implications for shallow moonquakes and the structure of the megaregolith , 2017 .

[53]  T. V. Gudkova,et al.  Construction of Martian Interior Model , 2005 .

[54]  Richard D. Starr,et al.  Bulk composition and early differentiation of Mars , 2007 .

[55]  A. McEwen,et al.  Evidence for recent volcanism on Mars from crater counts , 1999, Nature.

[56]  Stéphane May,et al.  Impact-Seismic Investigations of the InSight Mission , 2018, Space Science Reviews.

[57]  B. Banerdt,et al.  Preparing for InSight: An Invitation to Participate in a Blind Test for Martian Seismicity , 2017 .

[58]  C. Beghein,et al.  Measuring higher mode surface wave dispersion using a transdimensional Bayesian approach , 2019, Geophysical Journal International.

[59]  V. Lekić,et al.  Receiver function deconvolution using transdimensional hierarchical Bayesian inference , 2014 .

[60]  B. Jacobsen,et al.  Absolute S-velocity estimation from receiver functions , 2007 .

[61]  Lion Krischer,et al.  Modular and flexible spectral-element waveform modelling in two and three dimensions , 2018, Geophysical Journal International.

[62]  G. Schubert,et al.  Magnetism and thermal evolution of the terrestrial planets , 1983 .

[63]  G. Helffrich Extended-Time Multitaper Frequency Domain Cross-Correlation Receiver-Function Estimation , 2006 .

[64]  P. Green Reversible jump Markov chain Monte Carlo computation and Bayesian model determination , 1995 .

[65]  A. Jurkevics Polarization analysis of three-component array data , 1988 .

[66]  Patrick Wu,et al.  Rheology of the Upper Mantle: A Synthesis , 1993, Science.

[67]  K. Hirahara,et al.  Improvement in the Extended-Time Multitaper Receiver Function Estimation Technique , 2008 .

[68]  C. Russell,et al.  Constraints on the shallow elastic and anelastic structure of Mars from InSight seismic data , 2020, Nature Geoscience.

[69]  Charles J. Ammon,et al.  Iterative deconvolution and receiver-function estimation , 1999 .

[70]  I. Jackson,et al.  Grainsize-sensitive viscoelastic relaxation in olivine: Towards a robust laboratory-based model for seismological application , 2010 .

[71]  Faculté de Médecine Pitié-Salpêtrière Université Pierre et Marie Curie - Paris VI , 2013 .

[72]  T. Spohn,et al.  Early plate tectonics versus single-plate tectonics on Mars: Evidence from magnetic field history and crust evolution , 2003 .

[73]  L. Rivera,et al.  Prograde Rayleigh wave particle motion , 2005 .

[74]  P. Vacher,et al.  A Bayesian approach to infer radial models of temperature and anisotropy in the transition zone from surface wave dispersion curves , 2013 .

[75]  James A. D. Connolly,et al.  Computation of phase equilibria by linear programming: A tool for geodynamic modeling and its application to subduction zone decarbonation , 2005 .

[76]  A. Rivoldini,et al.  A Geophysical Perspective on the Bulk Composition of Mars , 2017 .

[77]  James A. D. Connolly,et al.  The geodynamic equation of state: What and how , 2009 .

[78]  T. Spohn Mantle differentiation and thermal evolution of Mars, Mercury, and Venus , 1991 .

[79]  B. Knapmeyer‐Endrun,et al.  Crustal S-Wave Velocity from Apparent Incidence Angles: A Case Study in Preparation for InSight , 2018, Space Science Reviews.

[80]  A. Plesa,et al.  Scaling laws of convection for cooling planets in a stagnant lid regime , 2019, Physics of the Earth and Planetary Interiors.

[81]  Takuto Maeda,et al.  Seismic Wave Propagation and Scattering in the Heterogeneous Earth : Second Edition , 2012 .

[82]  A. G. Greenhill,et al.  A Treatise on the Mathematical Theory of Elasticity , 1893, Nature.

[83]  T. Spohn,et al.  Viscosity of the Martian mantle and its initial temperature: Constraints from crust formation history and the evolution of the magnetic field , 2006 .

[84]  Lars Stixrude,et al.  Thermodynamics of mantle minerals – I. Physical properties , 2005 .

[85]  J. Sleewaegen,et al.  Interior structure of terrestrial planets : Modeling Mars' mantle and its electromagnetic, geodetic, and seismic properties , 2005 .

[86]  M. Grott,et al.  Thermal evolution and Urey ratio of Mars , 2014 .

[87]  Lars Stixrude,et al.  Thermodynamics of mantle minerals - II. Phase equilibria , 2011 .

[88]  M. van Driel,et al.  A probabilistic framework for single-station location of seismicity on Earth and Mars , 2017 .

[89]  G. J. Taylor,et al.  The bulk composition of Mars , 2013 .

[90]  David Mimoun,et al.  Evaluating the Wind-Induced Mechanical Noise on the InSight Seismometers , 2016, 1612.04308.

[91]  B. Banerdt,et al.  The Marsquake Service: Securing Daily Analysis of SEIS Data and Building the Martian Seismicity Catalogue for InSight , 2018, Space Science Reviews.

[92]  Marc Wathelet,et al.  An improved neighborhood algorithm: Parameter conditions and dynamic scaling , 2008 .

[93]  Gary Gibson,et al.  An introduction to seismology , 1996, Inf. Manag. Comput. Secur..

[94]  Huafeng Liu,et al.  SEIS: Insight’s Seismic Experiment for Internal Structure of Mars , 2019, Space Science Reviews.

[95]  Hrvoje Tkalčić,et al.  Receiver functions from seismic interferometry: a practical guide , 2019, Geophysical Journal International.

[96]  Hiroo Kanamori,et al.  Moho depth variation in southern California from teleseismic receiver functions , 2000 .

[97]  M. Wieczorek,et al.  Petrological constraints on the density of the Martian crust , 2014 .

[98]  David Mimoun,et al.  The Noise Model of the SEIS Seismometer of the InSight Mission to Mars , 2017 .

[99]  B. Fegley,et al.  An Oxygen Isotope Model for the Composition of Mars , 1997 .

[100]  David Mimoun,et al.  Estimations of the Seismic Pressure Noise on Mars Determined from Large Eddy Simulations and Demonstration of Pressure Decorrelation Techniques for the Insight Mission , 2017, Space Science Reviews.

[101]  David Mimoun,et al.  Single-station and single-event marsquake location and inversion for structure using synthetic Martian waveforms , 2016 .

[102]  Tilman Spohn,et al.  Thermal history of Mars and the sulfur content of its core , 1990 .

[103]  Ulrich R. Christensen,et al.  Convection in a variable-viscosity fluid: Newtonian versus power-law rheology , 1983 .