Virial theorem constraints on n-body terms of potential energy surfaces
暂无分享,去创建一个
[1] R. Parr. Implications of the virial theorem for quantum-chemical calculations of vibrational frequencies and equilibrium distances , 1992 .
[2] A. Varandas. A new formulation of three-body dynamical correlation energy for explicit potential functions , 1992 .
[3] A. Varandas,et al. Potential model for diatomic molecules including the united-atom limit and its use in a multiproperty fit for argon , 1992 .
[4] B. C. Garrett,et al. Use of scaled external correlation, a double many-body expansion, and variational transition state theory to calibrate a potential energy surface for FH2 , 1991 .
[5] A. Varandas,et al. Recalibration of a single-valued double many-body expansion potential energy surface for ground-state hydroperoxy and dynamics calculations for the oxygen atom + hydroxyl .fwdarw. oxygen + hydrogen atom reaction , 1990 .
[6] George C. Schatz,et al. The analytical representation of electronic potential-energy surfaces , 1989 .
[7] António J. C. Varandas,et al. A realistic double many-body expansion (DMBE) potential energy surface for ground-state O3 from a multiproperty fit to ab initio calculations, and to experimental spectroscopic, inelastic scattering, and kinetic isotope thermal rate data , 1988 .
[8] Donald G. Truhlar,et al. A double many‐body expansion of the two lowest‐energy potential surfaces and nonadiabatic coupling for H3 , 1987 .
[9] Mark S. Gordon,et al. Potential energy surfaces for polyatomic reaction dynamics , 1987 .
[10] A. Varandas,et al. A double many-body expansion of molecular potential energy functions , 1986 .
[11] E. Kryachko,et al. Modern Aspects of Diatomic Interaction Theory , 1985 .
[12] R. Nalewajski,et al. Normalized kinetic field potentials for atom-diatom reactions. Three-dimensional surfaces from the relaxed bond energy-bond order model , 1981 .
[13] R. Nalewajski. Virial theorem implications for the minimum energy reaction paths , 1980 .
[14] R. Nalewajski. Use of the virial theorem in construction of potential energy functions for diatomic molecules. 3. Improved potentials from the normalized kinetic field functions , 1978 .
[15] R. Nalewajski. Some implications of the virial theorem for molecular force fields , 1978 .
[16] R. Parr,et al. Use of the virial theorem in construction of potential energy functions for diatomic molecules , 1977 .
[17] R. Nalewajski. On the fues potential and its improvement , 1977 .
[18] G. Simons,et al. Virial theorem decomposition of molecular force fields , 1974 .
[19] B. Nelander. Simple Form for the Virial Theorem for Polyatomic Molecules , 1969 .
[20] R. Parr,et al. Toward Understanding Vibrations of Polyatomic Molecules , 1968 .
[21] R. Parr,et al. Toward an Understanding of Potential‐Energy Functions for Diatomic Molecules , 1968 .
[22] L. Knöll. Über die Berechnung der Elektronenenergie eines Moleküls aus dem Erwartungswert der kinetischen Energie , 1968 .
[23] R. Parr,et al. Chemical Binding and Potential‐Energy Functions for Molecules , 1967 .
[24] W. L. Clinton. Forces in Molecules. II. A Differential Equation for the Potential‐Energy Function , 1963 .
[25] W. L. Clinton. New Potential Energy Function. II. Theoretical , 1962 .
[26] W. L. Clinton. New Potential Energy Function. I. Empirical , 1962 .