Virial theorem constraints on n-body terms of potential energy surfaces

[1]  R. Parr Implications of the virial theorem for quantum-chemical calculations of vibrational frequencies and equilibrium distances , 1992 .

[2]  A. Varandas A new formulation of three-body dynamical correlation energy for explicit potential functions , 1992 .

[3]  A. Varandas,et al.  Potential model for diatomic molecules including the united-atom limit and its use in a multiproperty fit for argon , 1992 .

[4]  B. C. Garrett,et al.  Use of scaled external correlation, a double many-body expansion, and variational transition state theory to calibrate a potential energy surface for FH2 , 1991 .

[5]  A. Varandas,et al.  Recalibration of a single-valued double many-body expansion potential energy surface for ground-state hydroperoxy and dynamics calculations for the oxygen atom + hydroxyl .fwdarw. oxygen + hydrogen atom reaction , 1990 .

[6]  George C. Schatz,et al.  The analytical representation of electronic potential-energy surfaces , 1989 .

[7]  António J. C. Varandas,et al.  A realistic double many-body expansion (DMBE) potential energy surface for ground-state O3 from a multiproperty fit to ab initio calculations, and to experimental spectroscopic, inelastic scattering, and kinetic isotope thermal rate data , 1988 .

[8]  Donald G. Truhlar,et al.  A double many‐body expansion of the two lowest‐energy potential surfaces and nonadiabatic coupling for H3 , 1987 .

[9]  Mark S. Gordon,et al.  Potential energy surfaces for polyatomic reaction dynamics , 1987 .

[10]  A. Varandas,et al.  A double many-body expansion of molecular potential energy functions , 1986 .

[11]  E. Kryachko,et al.  Modern Aspects of Diatomic Interaction Theory , 1985 .

[12]  R. Nalewajski,et al.  Normalized kinetic field potentials for atom-diatom reactions. Three-dimensional surfaces from the relaxed bond energy-bond order model , 1981 .

[13]  R. Nalewajski Virial theorem implications for the minimum energy reaction paths , 1980 .

[14]  R. Nalewajski Use of the virial theorem in construction of potential energy functions for diatomic molecules. 3. Improved potentials from the normalized kinetic field functions , 1978 .

[15]  R. Nalewajski Some implications of the virial theorem for molecular force fields , 1978 .

[16]  R. Parr,et al.  Use of the virial theorem in construction of potential energy functions for diatomic molecules , 1977 .

[17]  R. Nalewajski On the fues potential and its improvement , 1977 .

[18]  G. Simons,et al.  Virial theorem decomposition of molecular force fields , 1974 .

[19]  B. Nelander Simple Form for the Virial Theorem for Polyatomic Molecules , 1969 .

[20]  R. Parr,et al.  Toward Understanding Vibrations of Polyatomic Molecules , 1968 .

[21]  R. Parr,et al.  Toward an Understanding of Potential‐Energy Functions for Diatomic Molecules , 1968 .

[22]  L. Knöll Über die Berechnung der Elektronenenergie eines Moleküls aus dem Erwartungswert der kinetischen Energie , 1968 .

[23]  R. Parr,et al.  Chemical Binding and Potential‐Energy Functions for Molecules , 1967 .

[24]  W. L. Clinton Forces in Molecules. II. A Differential Equation for the Potential‐Energy Function , 1963 .

[25]  W. L. Clinton New Potential Energy Function. II. Theoretical , 1962 .

[26]  W. L. Clinton New Potential Energy Function. I. Empirical , 1962 .