Nonparametric Frontier Estimation by Linear Programming

A new method for estimating the frontier of a set of points (or a support, in other words) is proposed. The estimates are defined as kernel functions covering all the points and whose associated support is of smallest surface. They are written as linear combinations of kernel functions applied to the points of the sample. The weights of the linear combination are then computed by solving a linear programming problem. In the general case, the solution of the optimization problem is sparse, that is, only a few coefficients are non zero. The corresponding points play the role of support vectors in the statistical learning theory. The L1-norm for the error of estimation is shown to be almost surely converging to zero, and the rate of convergence is provided.

[1]  Laurent Gardes,et al.  Estimating the support of a Poisson process via the Faber-Schauder basis and extreme values , 2002 .

[2]  St'ephane Girard,et al.  Central limit theorems for smoothed extreme value estimates of Poisson point processes boundaries , 2003, 1103.5884.

[3]  Léopold Simar,et al.  Iterated bootstrap with applications to frontier models , 1995 .

[4]  Abraham Charnes,et al.  Measuring the efficiency of decision making units , 1978 .

[5]  Pierre Jacob,et al.  Projection estimates of point processes boundaries , 2003, 1103.5938.

[6]  S. Girard,et al.  Extreme values and kernel estimates of point processes boundaries , 2004, 1103.5931.

[7]  P. Massart,et al.  Risk bounds for model selection via penalization , 1999 .

[8]  J. F. Bonnans Optimisation numérique : aspects théoriques et pratiques , 1997 .

[9]  Michael Brady,et al.  Novelty detection for the identification of masses in mammograms , 1995 .

[10]  A. Tsybakov,et al.  Estimation of non-sharp support boundaries , 1995 .

[11]  H. Abbar Un estimateur spline du contour d'une répartition ponctuelle aléatoire , 1990 .

[12]  John A. Hartigan,et al.  Clustering Algorithms , 1975 .

[13]  A. Tsybakov,et al.  Efficient Estimation of Monotone Boundaries , 1995 .

[14]  Guillaume Bouchard,et al.  Linear programming problems for frontier estimation , 2011, 1103.5925.

[15]  A. P. Korostelev,et al.  MiniMax Methods for Image Reconstruction , 1993 .

[16]  E. Mammen,et al.  On estimation of monotone and concave frontier functions , 1999 .

[17]  André Hardy,et al.  Une nouvelle approche des problèmes de classification automatique , 1982 .

[18]  A. Tsybakov,et al.  Minimax theory of image reconstruction , 1993 .

[19]  Bernhard Schölkopf,et al.  Learning with kernels , 2001 .

[20]  I. Gijbels,et al.  Estimation of a Support Curve via Order Statistics , 2000 .

[21]  Nello Cristianini,et al.  An Introduction to Support Vector Machines and Other Kernel-based Learning Methods , 2000 .

[22]  L. Devroye,et al.  Detection of Abnormal Behavior Via Nonparametric Estimation of the Support , 1980 .

[23]  M. Nussbaum,et al.  On the Estimation of a Support Curve of Indeterminate Sharpness , 1997 .

[24]  P. Jacob,et al.  Estimating the edge of a Poisson process by orthogonal series , 1995 .

[25]  Nello Cristianini,et al.  An introduction to Support Vector Machines , 2000 .