Structure of fumarate reductase from Wolinella succinogenes at 2.2 Å resolution

Fumarate reductase couples the reduction of fumarate to succinate to the oxidation of quinol to quinone, in a reaction opposite to that catalysed by the related complex II of the respiratory chain (succinate dehydrogenase). Here we describe the crystal structure at 2.2 Å resolution of the three protein subunits containing fumarate reductase from the anaerobic bacterium Wolinella succinogenes. Subunit A contains the site of fumarate reduction and a covalently bound flavin adenine dinucleotide prosthetic group. Subunit B contains three iron–sulphur centres. The menaquinol-oxidizing subunit C consists of five membrane-spanning, primarily helical segments and binds two haem b molecules. On the basis of the structure, we propose a pathway of electron transfer from the dihaem cytochrome b to the site of fumarate reduction and a mechanism of fumarate reduction. The relative orientations of the soluble and membrane-embedded subunits of succinate:quinone oxidoreductases appear to be unique.

[1]  Z. Otwinowski,et al.  Processing of X-ray diffraction data collected in oscillation mode. , 1997, Methods in enzymology.

[2]  J. J. van Hellemond,et al.  Expression and functional properties of fumarate reductase. , 1994, The Biochemical journal.

[3]  Mark Borodovsky,et al.  The complete genome sequence of the gastric pathogen Helicobacter pylori , 1997, Nature.

[4]  L. Lally The CCP 4 Suite — Computer programs for protein crystallography , 1998 .

[5]  W. Kabsch,et al.  Dictionary of protein secondary structure: Pattern recognition of hydrogen‐bonded and geometrical features , 1983, Biopolymers.

[6]  G. Tsiotis 9 – Photosystem I from Cyanobacteria Isolated in Crystallizing Form by Preparative Isoelectric Focusing: Isoelectric Focusing , 1994 .

[7]  P. Kraulis A program to produce both detailed and schematic plots of protein structures , 1991 .

[8]  G. Bricogne,et al.  [27] Maximum-likelihood heavy-atom parameter refinement for multiple isomorphous replacement and multiwavelength anomalous diffraction methods. , 1997, Methods in enzymology.

[9]  H. Michel,et al.  The coupling of light-induced electron transfer and proton uptake as derived from crystal structures of reaction centres from Rhodopseudomonas viridis modified at the binding site of the secondary quinone, QB. , 1997, Structure.

[10]  M. Saraste Oxidative phosphorylation at the fin de siècle. , 1999, Science.

[11]  A. McPherson Crystallization of Biological Macromolecules , 1999 .

[12]  A. Mattevi STRUCTURE OF L-ASPARTATE OXIDASE: IMPLICATIONS FOR THE SUCCINATE DEHYDROGENASE/ FUMARATE REDUCATSE FAMILY , 1999 .

[13]  M. Ringel,et al.  Deletion and site-directed mutagenesis of the Wolinella succinogenes fumarate reductase operon. , 1998, European journal of biochemistry.

[14]  S. Vik,et al.  Possible occurrence and role of an essential histidyl residue in succinate dehydrogenase. , 1981, Proceedings of the National Academy of Sciences of the United States of America.

[15]  Hartmut Michel,et al.  Structure at 2.8 Å resolution of cytochrome c oxidase from Paracoccus denitrificans , 1995, Nature.

[16]  J Deisenhofer,et al.  Crystal structure of the cytochrome bc1 complex from bovine heart mitochondria. , 1997, Science.

[17]  R M Esnouf,et al.  Further additions to MolScript version 1.4, including reading and contouring of electron-density maps. , 1999, Acta crystallographica. Section D, Biological crystallography.

[18]  R. Huber,et al.  Accurate Bond and Angle Parameters for X-ray Protein Structure Refinement , 1991 .

[19]  R J Read,et al.  Crystallography & NMR system: A new software suite for macromolecular structure determination. , 1998, Acta crystallographica. Section D, Biological crystallography.

[20]  E A Merritt,et al.  Raster3D: photorealistic molecular graphics. , 1997, Methods in enzymology.

[21]  W. Kenney,et al.  The covalently bound flavin of Vibrio succinogenes succinate dehydrogenase , 1977, FEBS letters.

[22]  A. Kröger Fumarate as terminal acceptor of phosphorylative electron transport. , 1978, Biochimica et biophysica acta.

[23]  H. Gassen,et al.  Molecular biology of pyridine nucleotide biosynthesis in Escherichia coli. Cloning and characterization of quinolinate synthesis genes nadA and nadB. , 1988, European journal of biochemistry.

[24]  A. Brünger Free R value: a novel statistical quantity for assessing the accuracy of crystal structures , 1992, Nature.

[25]  G. Unden,et al.  Redox potentials and kinetic properties of fumarate reductase complex from Vibrio succinogenes , 1984 .

[26]  W. McIntire,et al.  Covalent attachment of flavin to flavoproteins: occurrence, assay, and synthesis. , 1984, Methods in enzymology.

[27]  D. Rees,et al.  Structure of the Escherichia coli fumarate reductase respiratory complex. , 1999, Science.

[28]  C Sander,et al.  Mapping the Protein Universe , 1996, Science.

[29]  L. Hederstedt Respiration Without O2 , 1999, Science.

[30]  G. Unden,et al.  Isolation and functional aspects of the fumarate reductase involved in the phosphorylative electron transport of Vibrio succinogenes. , 1980, Biochimica et biophysica acta.

[31]  H. Schägger,et al.  A practical guide to membrane protein purification , 1994 .

[32]  R M Esnouf,et al.  An extensively modified version of MolScript that includes greatly enhanced coloring capabilities. , 1997, Journal of molecular graphics & modelling.

[33]  L. Hederstedt,et al.  A structural moDAl for the membrane‐integral domain of succinate:quinone oxidoreductases , 1996, FEBS letters.

[34]  S. Cole,et al.  Molecular biology, biochemistry and bioenergetics of fumarate reductase, a complex membrane-bound iron-sulfur flavoenzyme of Escherichia coli. , 1985, Biochimica et biophysica acta.

[35]  T. Tsukihara,et al.  Structure of the [2Fe-2S] ferredoxin I from the blue-green alga Aphanothece sacrum at 2.2 A resolution. , 1990, Journal of molecular biology.

[36]  R. Gunsalus,et al.  Identification of active site residues of Escherichia coli fumarate reductase by site-directed mutagenesis. , 1991, The Journal of biological chemistry.

[37]  J. Kuriyan,et al.  Convergent evolution of similar function in two structurally divergent enzymes , 1991, Nature.

[38]  R. Read Improved Fourier Coefficients for Maps Using Phases from Partial Structures with Errors , 1986 .

[39]  G. Unden,et al.  Wolinella succinogenes fumarate reductase contains a dihaem cytochrome b , 1990, Molecular microbiology.

[40]  C. Hägerhäll,et al.  Succinate: quinone oxidoreductases. Variations on a conserved theme. , 1997, Biochimica et biophysica acta.

[41]  G. Kleywegt,et al.  Checking your imagination: applications of the free R value. , 1996, Structure.

[42]  V. Luzzati,et al.  Traitement statistique des erreurs dans la determination des structures cristallines , 1952 .

[43]  J. Zou,et al.  Improved methods for building protein models in electron density maps and the location of errors in these models. , 1991, Acta crystallographica. Section A, Foundations of crystallography.