Oil Crop Platforms for Industrial uses : Outputs from the EPOBIO project

EPOBIO is an international project to realise the economic potential of plant-derived raw materials by designing new generations of bio-based products that will reach the marketplace 10-15 years from now. This report addresses the establishment of industrial crop platforms for oil.

[1]  K. Richards,et al.  Amplified fragment length polymorphism analysis of 96 Canadian oat cultivars released between 1886 and 2001 , 2004 .

[2]  B. Koletzko,et al.  Metabolic aspects of trans fatty acids. , 1997, Clinical nutrition.

[3]  J. H. Williams,et al.  Registration of C-22, C-29, C-37 Crambee Germplasm , 1986 .

[4]  Angela Karp,et al.  Molecular tools for screening biodiversity: plants and animals , 1998 .

[5]  Siyuan Tan,et al.  Herbicidal inhibitors of amino acid biosynthesis and herbicide-tolerant crops , 2006, Amino Acids.

[6]  W. Meijer,et al.  Low pod numbers and inefficient use of radiation are major constraints to high productivity in Crambe crops , 1999 .

[7]  Philip J. Dale,et al.  Opportunities for gene transfer from transgenic oilseed rape (Brassica napus) to related species , 1994, Transgenic Research.

[8]  T. Delmonte,et al.  An EST-enriched comparative map of Brassica oleracea and Arabidopsis thaliana. , 2000, Genome research.

[9]  W. Miller,et al.  Barley yellow dwarf viruses. , 1997, Annual review of phytopathology.

[10]  M. Farnham Genetic Variation among and within United States Collard Cultivars and Landraces as Determined by Randomly Amplified Polymorphic DNA Markers , 1996 .

[11]  Marc T. Facciotti,et al.  Improved stearate phenotype in transgenic canola expressing a modified acyl-acyl carrier protein thioesterase , 1999, Nature Biotechnology.

[12]  J. Kirkegaard,et al.  Biofumigation and Enhanced Biodegradation: Opportunity and Challenge in Soilborne Pest and Disease Management , 2006 .

[13]  W. Powell,et al.  Interfering with regular meiotic behaviour in Avena sativa as a method of incorporating the gene for mildew resistance from A. barbata , 1980, Euphytica.

[14]  M. Ansar,et al.  High frequency shoot regeneration and Agrobacterium-mediated DNA transfer in Canola (Brassica napus) , 2003, Plant Cell, Tissue and Organ Culture.

[15]  D. Somers,et al.  Use of paromomycin as a selective agent for oat transformation , 1995, Plant Cell Reports.

[16]  Colin Webb,et al.  Cereal-based fermented foods and beverages , 2003 .

[17]  A. Roeder,et al.  Control of Fruit Patterning in Arabidopsis by INDEHISCENT , 2004, Cell.

[18]  D. Lockhart,et al.  Functional Genomics , 2002, Springer Netherlands.

[19]  J. Daneshian,et al.  Efficient regeneration of Brassica napus L. hypocotyls and genetic transformation by Agrobacterium tumefaciens , 2005, Biologia Plantarum.

[20]  N. Jensen Genetics and Inheritance in Oats , 1961 .

[21]  Voelker,et al.  Lysophosphatidic acid acyltransferase from coconut endosperm mediates the insertion of laurate at the sn-2 position of triacylglycerols in lauric rapeseed oil and can increase total laurate levels , 1999, Plant physiology.

[22]  P. Morris,et al.  Integration, expression and inheritance of transgenes in hexaploid oat (Avena sativa L.). , 2003, Journal of plant physiology.

[23]  R. J. Baker,et al.  Oil and protein content of Avena species collected in North Africa, East Africa and the Middle East , 1979 .

[24]  C. M. Brown,et al.  Oil Content and Groat Weight of Entries in the World Oat Collection1 , 1972 .

[25]  R. Lande,et al.  THE EVOLUTION OF SELF‐FERTILIZATION AND INBREEDING DEPRESSION IN PLANTS. II. EMPIRICAL OBSERVATIONS , 1985, Evolution; international journal of organic evolution.

[26]  P. Maliga,et al.  Efficient elimination of selectable marker genes from the plastid genome by the CRE-lox site-specific recombination system. , 2001, The Plant journal : for cell and molecular biology.

[27]  M. Chilton,et al.  Regeneration of intact tobacco plants containing full length copies of genetically engineered T-DNA, and transmission of T-DNA to R1 progeny , 1983, Cell.

[28]  Jianzhong Du,et al.  Novel insect resistance in Brassica napus developed by transformation of chitinase and scorpion toxin genes , 2005, Plant Cell Reports.

[29]  P. L. Thomas,et al.  Cereal smuts in Manitoba and Saskatchewan, 1989-95 , 1997 .

[30]  S. Lincoln,et al.  A genetic map for Brassica napus based on restriction fragment length polymorphisms detected with expressed DNA sequences , 1991 .

[31]  D. Pental,et al.  Mapping and tagging of seed coat colour and the identification of microsatellite markers for marker-assisted manipulation of the trait in Brassica juncea , 2005, Theoretical and Applied Genetics.

[32]  E. Eriksmoen,et al.  Growth analysis of crambe , 1998 .

[33]  E. White,et al.  The influence of variety, year, disease control and plant growth regulator application on crop damage, yield and quality of winter oats (Avena sativa) , 2003, The Journal of Agricultural Science.

[34]  D. J. Lydiate,et al.  Desaturase multigene families of Brassica napus arose through genome duplication , 1997, Theoretical and Applied Genetics.

[35]  B. Fristensky,et al.  Discrimination among cultivars of rapeseed (Brassica napus L.) using DNA polymorphisms amplified from arbitrary primers , 2004, Theoretical and Applied Genetics.

[36]  M. Jablonski Beiträge zur Keimungsphysiologie und zur Beurteilung des Gebrauchswertes von Früchten der Crambe (Crambe abyssinica Höchst.) , 1962 .

[37]  P. Touboul,et al.  Mediterranean alpha-linolenic acid-rich diet in secondary prevention of coronary heart disease , 1994, The Lancet.

[38]  R. Downey,et al.  NOTE ON THE ISOLATION OF RAPE PLANTS WITH SEED OIL FREE FROM ERUCIC ACID , 1961 .

[39]  K. S. Labana,et al.  Breeding Oilseed Brassicas , 1993, Monographs on Theoretical and Applied Genetics.

[40]  Nu Genome analysis in Brassica with special reference to the experimental formation of B. napus and peculiar mode of fertilization. , 1935 .

[41]  D. Struss,et al.  Microsatellite markers for genome analysis in Brassica. I. development in Brassica napus and abundance in Brassicaceae species , 2001, Theoretical and Applied Genetics.

[42]  H. Mastebroek,et al.  Progress in a crambe cross breeding programme , 1997 .

[43]  D. Somers,et al.  Transformation of Oat Using Mature Embryo-Derived Tissue Cultures , 1998 .

[44]  C. Chu,et al.  A preliminary study on the introduction and cultivation of Crambe abyssinica in China, an oil plant for industrial uses. , 2000 .

[45]  S. Warwick,et al.  Genetic variation in the Crambe abyssinica - C. hispanica - C. glabrata complex , 2003, Genetic Resources and Crop Evolution.

[46]  T. Osborn,et al.  Mapping loci controlling the concentrations of erucic and linolenic acids in seed oil of Brassica napus L. , 1996, Theoretical and Applied Genetics.

[47]  Manju M. Gupta,et al.  Mapping of the loci controlling oleic and linolenic acid contents and development of fad2 and fad3 allele-specific markers in canola (Brassica napus L.) , 2006, Theoretical and Applied Genetics.

[48]  H. Zhong,et al.  Competence of oat (Avena sativa L.) shoot apical meristems for integrative transformation, inherited expression, and osmotic tolerance of transgenic lines containing hva1 , 2002, Theoretical and Applied Genetics.

[49]  S. Knudsen,et al.  Transformation of the developing barley endosperm by particle bombardment , 1991, Planta.

[50]  B. Lockhart,et al.  An analysis of the complete sequence of a sugarcane bacilliform virus genome infectious to banana and rice. , 1993, The Journal of general virology.

[51]  R. N. Oram,et al.  Breeding Indian mustard [Brassica juncea (L.) Czern.] for cold-pressed, edible oil production—a review , 2005 .

[52]  M. Lee,et al.  A restriction fragment length polymorphism based linkage map of a diploid Avena recombinant inbred line population. , 2001, Genome.

[53]  R. W. Downes Differences in transpiration rates between tropical and temperate grasses under controlled conditions , 1969, Planta.

[54]  A. Simopoulos Omega-3 Fatty Acids in Inflammation and Autoimmune Diseases , 2002, Journal of the American College of Nutrition.

[55]  J. Murphy,et al.  Selection For Resistance and Tolerance to Oat Mosaic Virus and Oat Golden Stripe Virus in Hexaploid Oats. , 1998, Plant disease.

[56]  S. Kresovich,et al.  Simple sequence repeat (SSR)-based marker variation in Brassica nigra genebank accessions and weed populations , 1999, Euphytica.

[57]  D. Parry,et al.  A Color Handbook of Diseases of Small Grain Cereal Crops , 1998 .

[58]  R. G. Ackman Canola Fatty Acids—An Ideal Mixture for Health, Nutrition, and Food Use , 1990 .

[59]  A. Zipf,et al.  Genotype effects on plant regeneration in callus and suspension cultures of Avena , 1995, Plant Cell, Tissue and Organ Culture.

[60]  K. Frey,et al.  Recurrent selection for groat oil content in oat , 1989 .

[61]  C. N. Stewart,et al.  Inheritance of GFP-Bt transgenes from Brassica napus in backcrosses with three wild B. rapa accessions. , 2004, Environmental biosafety research.

[62]  U. Lagercrantz Comparative mapping between Arabidopsis thaliana and Brassica nigra indicates that Brassica genomes have evolved through extensive genome replication accompanied by chromosome fusions and frequent rearrangements. , 1998, Genetics.

[63]  B. Koletzko,et al.  Trans fatty acid contents in spreads and cold cuts usually consumed by children , 1996, Zeitschrift fur Ernahrungswissenschaft.

[64]  Pollard,et al.  The biosynthesis of erucic acid in developing embryos of brassica rapa , 1998, Plant physiology.

[65]  M. Kearsey,et al.  QTL analysis of an intervarietal set of substitution lines in Brassica napus: (i) Seed oil content and fatty acid composition , 2003, Heredity.

[66]  Roger Y. Tsien,et al.  Crystal Structure of the Aequorea victoria Green Fluorescent Protein , 1996, Science.

[67]  M. Rapacz,et al.  Winter Hardiness, Frost Resistance and Vernalization Requirement of European Winter Oilseed Rape (Brassica napus var. oleifera) Cultivars within the Last 20 Years , 1999 .

[68]  J. O'donovan,et al.  The productivity of oats and berseem clover intercrops. I. Primary growth characteristics and forage quality at four densities of oats , 2005 .

[69]  W. May,et al.  Influence of wild oat (Avena fatua) relative time of emergence and density on cultivated oat yield, wild oat seed production, and wild oat contamination , 2005, Weed Science.

[70]  Xi Li,et al.  BASC: an integrated bioinformatics system for Brassica research , 2007, Nucleic Acids Res..

[71]  D. Taylor,et al.  A Tropaeolum majus FAD2 cDNA complements the fad2 mutation in transgenic Arabidopsis plants , 2006 .

[72]  O. Gamborg,et al.  Plant Cell, Tissue and Organ Culture , 1995, Springer Lab Manual.

[73]  R. Delourme,et al.  Genetic control of oil content in oilseed rape (Brassica napus L.) , 2006, Theoretical and Applied Genetics.

[74]  J. Mulder,et al.  Variation for agronomic characteristics in Crambe hispanica, a wild relative of Crambe abyssinica , 2004, Euphytica.

[75]  V. Lombard,et al.  A consensus linkage map for rapeseed (Brassica napus L.): construction and integration of three individual maps from DH populations , 2001, Theoretical and Applied Genetics.

[76]  S. Banga,et al.  Potential use of random amplified polymorphic DNA (RAPD) technique to study the genetic diversity in Indian mustard (Brassica juncea) and its relationship to heterosis , 1994, Theoretical and Applied Genetics.

[77]  J. Ohlrogge,et al.  Studies on biosynthesis of waxes by developing jojoba seed tissue , 1978, Lipids.

[78]  J. Nap,et al.  The impact on biosafety of the phosphinothricin-tolerance transgene in inter-specific B. rapa×B. napus hybrids and their successive backcrosses , 1997, Theoretical and Applied Genetics.

[79]  S. Kresovich,et al.  Identification of polymorphic, conserved simple sequence repeats (SSRs) in cultivated Brassica species , 1996, Theoretical and Applied Genetics.

[80]  Akira Kanno,et al.  Genetic improvement of Chinese cabbage for salt and drought tolerance by constitutive expression of a B. napus LEA gene , 2005 .

[81]  Jun Yu Li,et al.  A comparative linkage map of oilseed rape and its use for QTL analysis of seed oil and erucic acid content , 2006, Theoretical and Applied Genetics.

[82]  B. Pérez-Vich,et al.  Mapping minor QTL for increased stearic acid content in sunflower seed oil , 2004, Molecular Breeding.

[83]  Liu Yong-gang,et al.  Crambe meal: a review of nutrition, toxicity and effect of treatments. , 1993 .

[84]  G. Lip,et al.  The role of omega-3 fatty acids in the secondary prevention of cardiovascular disease. , 2003, QJM : monthly journal of the Association of Physicians.

[85]  Luca Lazzeri,et al.  Crambe oil ‐ a potential new hydraulic oil and quenchant , 1997 .

[86]  A. Kamal-Eldin,et al.  Lipids and antioxidants in groats and hulls of Swedish oats (Avena sativa L) , 2002 .

[87]  Andrew H. Paterson,et al.  Breeding Perennial Grain Crops , 2002 .

[88]  M. Thomashow Molecular Genetics of Cold Acclimation in Higher Plants , 1990 .

[89]  Y. Poirier,et al.  Increased flow of fatty acids toward beta-oxidation in developing seeds of Arabidopsis deficient in diacylglycerol acyltransferase activity or synthesizing medium-chain-length fatty acids. , 1999, Plant physiology.

[90]  P. Vincourt,et al.  Construction of an oilseed rape (Brassica napus L.) genetic map with SSR markers , 2005, Theoretical and Applied Genetics.

[91]  C. Ford,et al.  Spontaneous gene flow from rapeseed (Brassica napus) to wild Brassica oleracea , 2006, Proceedings of the Royal Society B: Biological Sciences.

[92]  F. H. Webster,et al.  Oats Chemistry and Technology , 1986 .

[93]  D. Taylor,et al.  Seed-Specific Heterologous Expression of a Nasturtium FAE Gene in Arabidopsis Results in a Dramatic Increase in the Proportion of Erucic Acid1 , 2004, Plant Physiology.

[94]  B. Andersen,et al.  Spontaneous hybridization between oilseed rape (Brassica Napus) and Weedy B. Campestris (Brassicaceae): A risk of growing genetically modified oilseed rape , 1994 .

[95]  A. Shelton,et al.  ADVANCES IN TRANSFORMATION TECHNOLOGY FOR VEGETABLE BRASSICA , 1996 .

[96]  K. Edwards,et al.  Transferability and genome specificity of a new set of microsatellite primers among Brassica species of the U triangle , 2002 .

[97]  R. Kleiman,et al.  Salinity Effects on Vegetative Growth, Seed Yield, and Fatty Acid Composition of Crambe , 1990 .

[98]  M. Labuschagne,et al.  Genetic analysis of Ethiopian mustard genotypes using amplified fragment length polymorphism (AFLP) markers , 2005 .

[99]  K. Frey,et al.  Influence of Climate and Physiologic Factors on Growth in Oats , 1961 .

[100]  S. Stymne,et al.  The distribution of caprylate, caprate and laurate in lipids from developing and mature seeds of transgenic Brassica napus L. , 2000, Planta.

[101]  L. Nilsson,et al.  An agro-economic analysis of willow cultivation in Poland , 2006 .

[102]  A. Kravchenko,et al.  Barley HVA1 gene confers salt tolerance in R3 transgenic oat , 2005 .

[103]  G. Scoles,et al.  A molecular marker map in 'Kanota' x 'Ogle' hexaploid oat (Avena spp.) enhanced by additional markers and a robust framework. , 2003, Genome.

[104]  A. Sharpe,et al.  Homoeologous loci control the accumulation of seed glucosinolates in oilseed rape (Brassica napus). , 2003, Genome.

[105]  R. Cansian,et al.  Discrimination among cultivars of cabbage using randomly amplified polymorphic DNA markers. , 2000 .

[106]  R. Gesch,et al.  Water Use and Root Length Density of Cuphea spp. Influenced by Row Spacing and Sowing Date , 2004 .

[107]  G. Poulsen Genetic transformation of Brassica , 1996 .

[108]  A. Sawicka,et al.  Effect of Inoculation on Population Numbers of Azospirillum Bacteria under Winter Wheat, Oat and Maize , 2001 .

[109]  N. Tuteja,et al.  Cold, salinity and drought stresses: an overview. , 2005, Archives of biochemistry and biophysics.

[110]  R. Guries,et al.  Linkage analysis of molecular markers and quantitative trait loci in populations of inbred backcross lines of Brassica napus L. , 1999, Genetics.

[111]  D. Taylor,et al.  Modification of seed oil content and acyl composition in the brassicaceae by expression of a yeast sn-2 acyltransferase gene. , 1997, The Plant cell.

[112]  Pietro Perrino,et al.  Yield and oil quality in selected lines of Crambe abyssinica Hochst. ex R.E. Fries and C. hispanica L. grown in Italy , 1995 .

[113]  W. Zhang,et al.  Efficient regeneration of transgenic plants from rice protoplasts and correctly regulated expression of the foreign gene in the plants , 1988, Theoretical and Applied Genetics.

[114]  J. Janick,et al.  Trends in new crops and new uses , 2002 .

[115]  V. Meier,et al.  Breeding Behavior for Crosses of Crambe abyssinica and a Plant Introduction Designated C. hispanica1 , 1973 .

[116]  J. Napier,et al.  Biosynthesis of Very-Long-Chain Polyunsaturated Fatty Acids in Transgenic Oilseeds: Constraints on Their Accumulationw⃞ , 2004, The Plant Cell Online.

[117]  K. Marhold,et al.  Polyploidy, hybridization and reticulate evolution: lessons from the Brassicaceae , 2006, Plant Systematics and Evolution.

[118]  Y. Chyi,et al.  A genetic linkage map of restriction fragment length polymorphism loci for Brassica rapa (syn. campestris) , 1992 .

[119]  G. Rakow,et al.  BRASSICA CARINATA AN OILSEED CROP FOR CANADA , 1998 .

[120]  D. Somers,et al.  Transgenic DNA integrated into the oat genome is frequently interspersed by host DNA. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[121]  P. Broun,et al.  Genetic engineering of plant lipids. , 1999, Annual review of nutrition.

[122]  P. Tanhuanpää,et al.  Association of RAPD marker with linolenic acid concentration in the seed oil of rapeseed (Brassica napus L.). , 1995, Genome.

[123]  S. Tsakas,et al.  Genome and species relationships in genus Avena based on RAPD and AFLP molecular markers , 2004, Theoretical and Applied Genetics.

[124]  I. Tarumoto,et al.  Intergenomic translocations of polyploid oats (genus Avena) revealed by genomic in situ hybridization. , 2000, Genes & genetic systems.

[125]  Rikke Bagger Jørgensen,et al.  INTROGRESSION OF CROP GENES FROM OILSEED RAPE (BRASSICA NAPUS) TO RELATED WILD SPECIES - AN AVENUE FOR THE ESCAPE OF ENGINEERED GENES , 1998 .

[126]  G. Munkvold,et al.  Responses to selection for partial resistance to crown rust in oat , 2006 .

[127]  I. Riley,et al.  Inducible Flavone in Oats (Avena sativa) Is a Novel Defense Against Plant-Parasitic Nematodes. , 2004, Phytopathology.

[128]  P. Quail,et al.  Maize polyubiquitin genes: structure, thermal perturbation of expression and transcript splicing, and promoter activity following transfer to protoplasts by electroporation , 1992, Plant Molecular Biology.

[129]  B. Cunfer Stagonospora and Septoria diseases of barley, oat, and rye , 2000 .

[130]  R. von Bothmer,et al.  Morphological and molecular diversity of Nordic oat through one hundred years of breeding , 2006, Euphytica.

[131]  T. Voelker,et al.  Genetic engineering of a quantitative trait: metabolic and genetic parameters influencing the accumulation of laurate in rapeseed , 1996 .

[132]  D. Wood,et al.  Composition and Structure of High-Oil Oat , 1997 .

[133]  C. Rush Ecology and epidemiology of benyviruses and plasmodiophorid vectors. , 2003, Annual review of phytopathology.

[134]  H. Koop,et al.  Generation of marker-free plastid transformants using a transiently cointegrated selection gene , 2004, Nature Biotechnology.

[135]  I. Graham,et al.  Acyl CoA profiles of transgenic plants that accumulate medium-chain fatty acids indicate inefficient storage lipid synthesis in developing oilseeds. , 2002, The Plant journal : for cell and molecular biology.

[136]  J. S. Armstrong,et al.  Oat Cover Cropping and Soil Insecticides in an Integrated Sugarbeet Root Maggot (Diptera: Otitidae) Management Program , 2003 .

[137]  H. Klee,et al.  Pod shatter-resistant Brassica fruit produced by ectopic expression of the FRUITFULL gene. , 2006, Plant biotechnology journal.

[138]  F. Nagy,et al.  Transgenic Plants of Brassica napus L. , 1987, Bio/Technology.

[139]  A. Truswell Cereal grains and coronary heart disease , 2002, European Journal of Clinical Nutrition.

[140]  A. Green,et al.  High-oleic acid Australian Brassica napus and B. juncea varieties produced by co-suppression of endogenous Delta12-desaturases. , 2000, Biochemical Society transactions.

[141]  D. Hawkins,et al.  Characterization of acyl-ACP thioesterases of mangosteen (Garcinia mangostana) seed and high levels of stearate production in transgenic canola. , 1998, The Plant journal : for cell and molecular biology.

[142]  E. M. White Structure and development of oats , 1995 .

[143]  H. Zeinali,et al.  Cold Tolerance in Oilseed Rape over Varying Acclimation Durations , 2003 .

[144]  K. P. Pauls The utility of doubled haploid populations for studying the genetic control of traits determinated by recessive alleles , 1996 .

[145]  L. Domier,et al.  Combined AFLP and RFLP mapping in two hexaploid oat recombinant inbred populations. , 2000, Genome.

[146]  T. Fetch,et al.  Evaluation of Avena spp. Accessions for Resistance to Oat Stem Rust. , 2005, Plant disease.

[147]  D. Somers,et al.  Fertile, Transgenic Oat Plants , 1992, Bio/Technology.

[148]  V. Knauf,et al.  Modification of Brassica seed oil by antisense expression of a stearoyl-acyl carrier protein desaturase gene. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[149]  F. Zeller Improving cultivated oat (Avena sativa L.) by making use of the genetic potential of wild Avena species , 1998 .

[150]  H. Kaeppler,et al.  Identification of Quantitative Trait Loci for Resistance to Crown Rust in Oat Line MAM17‐5 , 2003 .

[151]  Inheritance of multiple herbicide resistance in wild oat (Avena fatua L.) , 2006 .

[152]  Wulf Diepenbrock,et al.  Integrated nitrogen management strategies to improve seed yield, oil content and nitrogen efficiency of winter oilseed rape (Brassica napus L.): A review , 2006 .

[153]  W. Friedt,et al.  Analysis of Genetic Diversity in the Brassica napus L. Gene Pool Using SSR Markers , 2006, Genetic Resources and Crop Evolution.

[154]  W. Friedt,et al.  RECENT DEVELOPMENTS AND PERSPECTIVES OF INDUSTRIAL RAPESEED BREEDING , 1998 .

[155]  D. Taylor,et al.  Improving Erucic Acid Content in Rapeseed through Biotechnology: What Can the Arabidopsis FAE1 and the Yeast SLC1‐1 Genes Contribute?1,2 , 2001 .

[156]  K. Frey Genetic responses of oat genotypes to environmental factors , 1998 .

[157]  G. Zanatta,et al.  Occurrence and distribution of nitrogen fixing bacterial community associated with oat (Avena sativa) assessed by molecular and microbiological techniques , 2006 .

[158]  W. Ecke,et al.  Mapping the genome of rapeseed (Brassica napus L.). II. Localization of genes controlling erucic acid synthesis and seed oil content , 1995, Theoretical and Applied Genetics.

[159]  G. Xue,et al.  A novel cis-acting element, ESP, contributes to high-level endosperm-specific expression in an oat globulin promoter , 2006, Plant Molecular Biology.

[160]  V. Meier,et al.  Agronomic Evaluation of Crambe as a Source of Oil1 , 1972 .

[161]  D. Pierce,et al.  Genetically transformed maize plants from protoplasts. , 1988, Science.

[162]  M. Tonguç,et al.  Genetic relationships of Brassica vegetables determined using database derived simple sequence repeats , 2004, Euphytica.

[163]  J. Suzuki,et al.  Linkage arrangement of restriction fragment length polymorphism loci in Brassica oleracea , 1990, Theoretical and Applied Genetics.

[164]  D. Tanaka,et al.  Yield and water use of broadleaf crops in a semiarid climate , 2003 .

[165]  D. Stuthman,et al.  Allelic Shifts and Quantitative Trait Loci in a Recurrent Selection Population of Oat , 2001 .

[166]  M. Van Montagu,et al.  Engineering herbicide resistance in plants by expression of a detoxifying enzyme , 1987, The EMBO journal.

[167]  Jung Sun Kim,et al.  A Sequence-Tagged Linkage Map of Brassica rapa , 2006, Genetics.

[168]  K. J. Lessman Variation in crambe,Crambe abyssinica hochst , 1975 .

[169]  S. Stymne,et al.  Very long chain and hydroxylated fatty acids in offspring of somatic hybrids between Brassica napus and Lesquerella fendleri , 1999, Theoretical and Applied Genetics.

[170]  A. Angelov,et al.  Development of a new oat-based probiotic drink. , 2006, International journal of food microbiology.

[171]  J. Martens,et al.  Virulence dynamics in Puccinia graminis f.sp. avenae in Canada , 1979 .

[172]  E. Hudson,et al.  Development and applications of enhanced green fluorescent protein mutants. , 1998, BioTechniques.

[173]  David J. Williams,et al.  Patterns of AFLP variation in a core subset of cultivated hexaploid oat germplasm , 2005, Theoretical and Applied Genetics.

[174]  Marjanović-Jeromela Ana,et al.  Breeding of rapeseed (Brassica napus l) , 2007 .

[175]  P. Jauhar Modern Biotechnology as an Integral Supplement to Conventional Plant Breeding: The Prospects and Challenges , 2006 .

[176]  D. Struss,et al.  Microsatellite markers for genome analysis in Brassica. II. Assignment of rapeseed microsatellites to the A and C genomes and genetic mapping in Brassica oleracea L. , 2001, Theoretical and Applied Genetics.

[177]  B. Diers,et al.  Genetic diversity of oilseedBrassica napus germ plasm based on restriction fragment length polymorphisms , 1994, Theoretical and Applied Genetics.

[178]  D. Rana,et al.  Conservation of the microstructure of genome segments in Brassica napus and its diploid relatives. , 2004, The Plant journal : for cell and molecular biology.

[179]  C. Willenborg Characterizing tame oat (Avena sativa L.) competitive response to wild oat (Avena fatua L.) interference , 2004 .

[180]  Yuval Eshed,et al.  SHATTERPROOF MADS-box genes control seed dispersal in Arabidopsis , 2000, Nature.

[181]  Y. Tada,et al.  Apoptotic cell death is a common response to pathogen attack in oats. , 2002, Molecular plant-microbe interactions : MPMI.

[182]  B. Gill,et al.  Genomic in situ hybridization differentiates between A/D- and C-genome chromatin and detects intergenomic translocations in polyploid oat species (genus Avena). , 1994, Genome.

[183]  F. Krens,et al.  Effective production of marker-free transgenic strawberry plants using inducible site-specific recombination and a bifunctional selectable marker gene. , 2004, Plant biotechnology journal.

[184]  H. Mastebroek,et al.  Variation for agronomic characteristics in crambe (Crambe abyssinica Hochst. ex Fries) , 1994 .

[185]  M. Meydani,et al.  The antiatherogenic potential of oat phenolic compounds. , 2004, Atherosclerosis.

[186]  A. Baranger,et al.  Gene flow from transgenic crops , 1997, Nature.

[187]  S. Stymne,et al.  Fatty acid distribution and lipid metabolism in developing seeds of laurate-producing rape (Brassica napus L.) , 1997, Planta.

[188]  G. King,et al.  An integrated AFLP and RFLP Brassica oleracea linkage map from two morphologically distinct doubled-haploid mapping populations , 2000, Theoretical and Applied Genetics.

[189]  R. Wise,et al.  A linkage map of diploid Avena based on RFLP loci and a locus conferring resistance to nine isolates of Puccinia coronata var. ‘avenae’ , 1994, Theoretical and Applied Genetics.

[190]  D. Struss,et al.  SCAR and RAPD markers associated with 18-carbon fatty acids in rapeseed, Brassica napus , 1999 .

[191]  E. B. Murphy,et al.  Resistance to hygromycin B , 1985, Plant Molecular Biology.

[192]  C. Holbrook,et al.  Altering Fatty Acid Composition in Oil Seed Crops , 2004 .

[193]  Rikke Bagger Jørgensen,et al.  Introgression between oilseed rape (Brassica napus L.) and its weedy relative B. rapa L. in a natural population , 2001, Genetic Resources and Crop Evolution.

[194]  T. Mitchell-Olds,et al.  The ABC's of comparative genomics in the Brassicaceae: building blocks of crucifer genomes. , 2006, Trends in plant science.

[195]  R. Chibbar,et al.  Potential taxonomic use of random amplified polymorphic DNA (RAPD): a case study in Brassica , 1992, Theoretical and Applied Genetics.

[196]  C. P. Hong,et al.  Toward unraveling the structure of Brassica rapa genome , 2006 .

[197]  W. Ecke,et al.  Mapping the genome of rapeseed (Brassica napus L.). I. Construction of an RFLP linkage map and localization of QTLs for seed glucosinolate content , 1995, Theoretical and Applied Genetics.

[198]  R. M. Laverick Winter oats: agronomy review. , 1997 .

[199]  P. Jauhar,et al.  Genetic enrichment of cereal crops via alien gene transfer: New challenges , 2001, Plant Cell, Tissue and Organ Culture.

[200]  J. Irwin,et al.  The use of phenotypic markers to identify Brassica oleracea genotypes for routine high-throughput Agrobacterium-mediated transformation , 2004, Plant Cell Reports.

[201]  E. Hammond,et al.  Genetics, characteristics, and utilization of oil in caryopses of oat species , 1975 .

[202]  Mariam B. Sticklen,et al.  Shoot apical meristem: A sustainable explant for genetic transformation of cereal crops , 2005, In Vitro Cellular & Developmental Biology - Plant.

[203]  B. Clifford Diseases, pests and disorders of oats , 1995 .

[204]  Kokichi Hinata,et al.  Transgenic Rice Plants After Direct Gene Transfer into Protoplasts , 1988, Bio/Technology.

[205]  L. Lazzeri,et al.  Agronomic characterization of some Crambe abyssinica genotypes in a locality of the Po Valley , 1998 .

[206]  R. Welch,et al.  The Oat Crop , 1995, World Crop Series.

[207]  S. Kianian,et al.  Generation of a Brassica oleracea composite RFLP map: linkage arrangements among various populations and evolutionary implications , 1992, Theoretical and Applied Genetics.

[208]  J. Nix Farm management pocketbook , 1980 .

[209]  L. Domier,et al.  Identification of quantitative Loci for tolerance to barley yellow dwarf virus in oat. , 1998, Phytopathology.

[210]  P. Lu,et al.  Rapid genome change in synthetic polyploids of Brassica and its implications for polyploid evolution. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[211]  B. Gossen,et al.  Reaction of seedling roots of 14 crop species to Fusarium graminearum from wheat heads , 2001 .

[212]  P. McVetty,et al.  CASTOR HIGH ERUCIC ACID, LOW GLUCOSINOLATE SUMMER RAPE , 1998 .

[213]  P. Quail,et al.  Photoregulation of a phytochrome gene promoter from oat transferred into rice by particle bombardment. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[214]  J Watson,et al.  Genetic engineering. , 1985, The Lamp.

[215]  D. Puttick,et al.  NON-DESTRUCTIVE SCREENING OF HAPLOID EMBRYOS FOR GLUFOSINATE AMMONIUM RESISTANCE FOUR WEEKS AFTER MICROSPORE TRANSFORMATION IN BRASSICA , 1998 .

[216]  Hua Li,et al.  Recurring challenges from a necrotrophic fungal plant pathogen: a case study with Leptosphaeria maculans (causal agent of blackleg disease in brassicas) in Western Australia. , 2005, Annals of botany.

[217]  D. Stuthman,et al.  Analysis of factors influencing milling yield and their association to other traits by QTL analysis in two hexaploid oat populations , 2001, Theoretical and Applied Genetics.

[218]  C. Ghersa,et al.  Using phenology prediction in weed management: a review , 1995 .

[219]  D. Harder Virulence dynamics of Puccinia graminis f. sp. avenae in Canada, 1921-1993 , 1994 .

[220]  J. Schoenau,et al.  A review of sulphur fertilizer management for optimum yield and quality of canola in the Canadian Great Plains , 2005 .

[221]  D. Meek,et al.  Examining Changes in Soil Organic Carbon with Oat and Rye Cover Crops Using Terrain Covariates , 2006 .

[222]  Marjoleine C. Hanegraaf Environmental performance indicators for nitrogen , 1998 .

[223]  S. Kochhar Stabilisation of frying oils with natural antioxidative components , 2000 .

[224]  A. Nuutila,et al.  Transgenic oat plants via visual selection of cells expressing green fluorescent protein , 2000, Plant Cell Reports.

[225]  K. Frey,et al.  Observed Gains from Three Recurrent Selection Regimes for Increased Groat-Oil Content of Oat , 1991 .

[226]  J. Schell,et al.  Modification of Plant Lipid Synthesis , 1995, Science.

[227]  D. Somers,et al.  Identification of molecular markers associated with linoleic acid desaturation in Brassica napus , 1998, Theoretical and Applied Genetics.

[228]  J. Valkonen,et al.  Yield reduction caused by a soil-borne disease of naked, dwarf, and conventional oat in Finland , 1996 .

[229]  D. L. Reeves,et al.  Agronomy of oats , 1995 .

[230]  M. Yanofsky,et al.  Negative regulation of the SHATTERPROOF genes by FRUITFULL during Arabidopsis fruit development. , 2000, Science.

[231]  P J Dale,et al.  Barriers to gene flow from oilseed rape (Brassica napus) into populations of Sinapis arvensis , 2002, Molecular ecology.

[232]  S. J. Slinger,et al.  The effects of original and randomized rapeseed oils containing high or very low levels of erucic acid on cardiac lipids and myocardial lesions in rats , 1977, Lipids.

[233]  M. Vrvić,et al.  Natural and modified (1-->3)-beta-D-glucans in health promotion and disease alleviation. , 2005, Critical reviews in biotechnology.

[234]  Wang Youping,et al.  Intergeneric hybridization between Brassica species and Crambe abyssinica , 1998, Euphytica.

[235]  R. Teutonico,et al.  Mapping of RFLP and qualitative trait loci in Brassica rapa and comparison to the linkage maps of B. napus, B. oleracea, and Arabidopsis thaliana , 1994, Theoretical and Applied Genetics.

[236]  W. Ecke,et al.  Conditional QTL mapping of oil content in rapeseed with respect to protein content and traits related to plant development and grain yield , 2006, Theoretical and Applied Genetics.

[237]  D. Parke,et al.  Rapeseed oil : An autoxidative food lipid , 1999 .

[238]  D. Taylor,et al.  Increased levels of erucic acid in Brassica carinata by co-suppression and antisense repression of the endogenous FAD2 gene. , 2005, Metabolic engineering.

[239]  J. Chong,et al.  Comparative AFLP mapping in two hexaploid oat populations , 2001, Theoretical and Applied Genetics.

[240]  Jeffrey Charles Wildeman The effect of oat (Avena sativa L.) genotype and plant population on wild oat (Avena fatua L.) competition , 2004 .

[241]  M. Hinchee,et al.  Arabidopsis ovule is the target for Agrobacterium in planta vacuum infiltration transformation. , 1999, The Plant journal : for cell and molecular biology.

[242]  J. Holland,et al.  Polymorphism of PCR-based markers targeting exons, introns, promoter regions, and SSRs in maize and introns and repeat sequences in oat. , 2001, Genome.

[243]  M. Sorrells,et al.  Association of a major groat oil content QTL and an acetyl-CoA carboxylase gene in oat , 1999, Theoretical and Applied Genetics.

[244]  R. Jansen,et al.  Internal transcribed spacer sequence phylogeny of Crambe L. (Brassicaceae): molecular data reveal two Old World disjunctions. , 1999, Molecular phylogenetics and evolution.

[245]  C. Abdmishani,et al.  Identification of molecular markers associated with oleic and linolenic acid in spring oilseed rape (Brassica napus) , 2006 .

[246]  M. Hirai Genetic Analysis of Clubroot Resistance in Brassica Crops , 2006 .

[247]  C. N. Stewart,et al.  Agrobacterium -Mediated Transformation of Canola , 2004 .

[248]  D. Negrotto,et al.  The use of phosphomannose-isomerase as a selectable marker to recover transgenic maize plants (Zea mays L.) via Agrobacterium transformation , 2000, Plant Cell Reports.

[249]  R. Yadava,et al.  Salt Tolerance of Some Oats (Avena sativa L.) Varieties at Germination and Seedling Stage , 1986 .

[250]  D. Bouchez,et al.  Transformation of Pakchoi (Brassica rapa L. ssp. chinensis) by Agrobacterium infiltration , 2000, Molecular Breeding.

[251]  R. Scarth,et al.  Modification of Brassica Oil Using Conventional and Transgenic Approaches , 2006 .

[252]  W. Friedt,et al.  Breeding high-stearic oilseed rape (Brassica napus) with high- and low-erucic background using optimised promoter-gene constructs , 2006, Molecular Breeding.

[253]  A. Altman,et al.  Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance , 2003, Planta.

[254]  Development and Characterization of Microsatellite and RFLP-Derived PCR Markers in Oat , 2002 .

[255]  W. Friedt,et al.  Molecular characterization of novel resynthesized rapeseed (Brassica napus) lines and analysis of their genetic diversity in comparison with spring rapeseed cultivars , 2003 .

[256]  M. Schmitt,et al.  Fertilizer Recommendations For Agronomic Crops In Minnesota , 1990 .

[257]  R. Vierstra,et al.  Soluble, highly fluorescent variants of green fluorescent protein (GFP) for use in higher plants , 1998, Plant Molecular Biology.

[258]  H. Kaeppler,et al.  Genetic Analysis of Quantitative Trait Loci for Groat Protein and Oil Content in Oat , 2004 .

[259]  D. Somers,et al.  Expression of the Commelina yellow mottle virus promoter in transgenic oat , 1998, Plant Cell Reports.

[260]  E. Booth,et al.  Agricultural aspects of rape and other Brassica products , 2001 .

[261]  S. Tanksley,et al.  An RFLP-based linkage map of oats based on a cross between two diploid taxa (Avena atlantica × A. hirtula) , 1992 .

[262]  M. Frentzen,et al.  Utilization of erucoyl-CoA by acyltransferases from developing seeds of Brassica napus (L.) involved in triacylglycerol biosynthesis , 1990 .

[263]  J. Brouwer,et al.  Aspects of oat physiology , 1995 .

[264]  B. Landry,et al.  Comparison of the genetic maps of Brassica napus and Brassica oleracea , 1997, Theoretical and Applied Genetics.

[265]  C. P. Hong,et al.  A Survey of the Brassica rapa genome by BAC-end sequence analysis and comparison with Arabidopsis thaliana. , 2006, Molecules and cells.

[266]  Y. Takahata,et al.  Efficient plant regeneration from leaves of rapeseed (Brassica napus L.): the influence of AgNO3 and genotype , 2005, Plant Cell Reports.

[267]  P. Arús,et al.  Mapping of a gene determining linolenic acid concentration in rapeseed with DNA-based markers , 1995, Theoretical and Applied Genetics.

[268]  R. Snowdon,et al.  GISH analysis of disomic Brassica napus-Crambe abyssinica chromosome addition lines produced by microspore culture from monosomic addition lines , 2006, Plant Cell Reports.

[269]  F. Okkels,et al.  Analysis of mannose selection used for transformation of sugar beet , 1998, Molecular Breeding.

[270]  R. Lásztity Oat grain—a wonderful reservoir of natural nutrients and biologically active substances , 1998 .

[271]  W. Zhou,et al.  Genetic analyses of agronomic and seed quality traits of doubled haploid population in Brassica napus through microspore culture , 2006, Euphytica.

[272]  J. Weibull Resistance in the wild crop relatives Avena macrostachya and Hordeum bogdani to the aphid Rhopalosiphum padi , 1988 .

[273]  S. Dalton,et al.  Transformation of oat and inheritance of bar gene expression , 2001, Plant Cell, Tissue and Organ Culture.

[274]  M. Lysak,et al.  Towards the era of comparative evolutionary genomics in Brassicaceae , 2006, Plant Systematics and Evolution.

[275]  U. Lagercrantz,et al.  Comparative genome mapping in Brassica. , 1996, Genetics.

[276]  M. Chan,et al.  Agrobacterium-mediated production of transgenic rice plants expressing a chimeric α-amylase promoter/β-glucuronidase gene , 1993, Plant Molecular Biology.

[277]  M. Kiefer,et al.  Genome evolution among cruciferous plants: a lecture from the comparison of the genetic maps of three diploid species--Capsella rubella, Arabidopsis lyrata subsp. petraea, and A. thaliana. , 2005, American journal of botany.

[278]  P. McVetty,et al.  Apollo low linolenic summer rape , 1995 .

[279]  D. Shaner,et al.  Imidazolinone-tolerant crops: history, current status and future. , 2005, Pest management science.

[280]  G. Barker,et al.  Pairing and recombination at meiosis of Brassica rapa (AA) × Brassica napus (AACC) hybrids , 2006, Theoretical and Applied Genetics.

[281]  A. Nuutila,et al.  Embryogenesis and regeneration of green plantlets from oat (Avena sativa L.) leaf-base segments: influence of nitrogen balance, sugar and auxin , 2002, Plant Cell Reports.

[282]  K. Livak,et al.  DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. , 1990, Nucleic acids research.

[283]  O. Rasmussen,et al.  Agrobacterium tumefaciens-mediated transformation of Brassica napus winter cultivars , 1997, Transgenic Research.

[284]  P. Lemaux,et al.  Endosperm-specific expression of green fluorescent protein driven by the hordein promoter is stably inherited in transgenic barley (Hordeum vulgare) plants. , 2002, Physiologia plantarum.

[285]  Frank Gunstone,et al.  Rapeseed and Canola Oil: Production, Processing, Properties and Uses , 2004 .

[286]  W. Wang,et al.  Development of a novel Agrobacterium-mediated transformation method to recover transgenic Brassica napus plants , 2003, Plant Cell Reports.

[287]  Z. Chen,et al.  Evolution of genome size in Brassicaceae. , 2005, Annals of botany.

[288]  R. Horsch,et al.  Transformation of Brassica napus with Agrobacterium tumefaciens based vectors , 1987, Plant Cell Reports.

[289]  E. Leonard High-erucic vegetable oils , 1992 .

[290]  Henning Kage,et al.  N balance as an indicator of N leaching in an oilseed rape - winter wheat - winter barley rotation , 2006 .

[291]  S. Tanksley,et al.  A molecular linkage map of cultivated oat. , 1995, Genome.

[292]  L. Lukens,et al.  Segmental Structure of the Brassica napus Genome Based on Comparative Analysis With Arabidopsis thaliana , 2005, Genetics.

[293]  L. Alakukku,et al.  Root growth dynamics and biomass input by Nordic annual field crops , 2005 .

[294]  N. Tinker,et al.  A molecular linkage map with associated QTLs from a hulless × covered spring oat population , 2004, Theoretical and Applied Genetics.

[295]  C. Thompson,et al.  Characterization of the herbicide‐resistance gene bar from Streptomyces hygroscopicus , 1987, The EMBO journal.

[296]  Christel Garcia,et al.  Acyl-CoA elongase, a key enzyme in the development of high-erucic acid rapeseed? , 2005 .

[297]  J. Bowman Molecules and morphology: comparative developmental genetics of the Brassicaceae , 2006, Plant Systematics and Evolution.

[298]  C. N. Stewart,et al.  Increased Agrobacterium-mediated transformation and rooting efficiencies in canola (Brassica napus L.) from hypocotyl segment explants , 2003, Plant Cell Reports.

[299]  H. Zhong,et al.  Genetic Engineering of Oat ( Avena Sativa L.) Via the Biolistic Bombardment of Shoot Apical Meristems , 2004 .

[300]  Zuhua He,et al.  Medium, Explant and Genotype Factors Influencing Shoot Regeneration in Oilseed Brassica spp. , 2003 .

[301]  D. Brunel,et al.  Specific molecular marker of the genes controlling linolenic acid content in rapeseed , 1996, Theoretical and Applied Genetics.

[302]  Y. Wang,et al.  Development of rapeseed with high erucic acid content by asymmetric somatic hybridization between Brassica napus and Crambe abyssinica , 2003, Theoretical and Applied Genetics.

[303]  J. Suzuki,et al.  A linkage map ofBrassica rapa (syn.campestris) based on restriction fragment length polymorphism loci , 1991, Theoretical and Applied Genetics.

[304]  P. McVetty,et al.  Mercury high erucic low glucosinolate summer rape , 1995 .

[305]  V. Čurn,et al.  Green fluorescent protein as a vital marker for non-destructive detection of transformation events in transgenic plants , 2006, Plant Cell, Tissue and Organ Culture.

[306]  Pete Smith,et al.  The potential distribution of bioenergy crops in the UK under present and future climate , 2006 .

[307]  E. Paczos-Grzęda Pedigree, RAPD and simplified AFLP-based assessment of genetic relationships among Avena sativa L. cultivars , 2004, Euphytica.

[308]  A. Rodionov,et al.  Genomic Configuration of the Autotetraploid Oat Species Avena macrostachya Inferred from Comparative Analysis of ITS1 and ITS2 Sequences: on the Oat Karyotype Evolution during the Early Events of the Avena Species Divergence , 2005, Russian Journal of Genetics.

[309]  P. Berry,et al.  A physiological analysis of oilseed rape yields: Past and future , 2006, The Journal of Agricultural Science.

[310]  L. Jun,et al.  Transgene directionally integrated into C-genome of Brassica napus , 2006 .

[311]  E. Hammond,et al.  Correlated responses of fatty acid composition, grain quality, and agronomic traits to nine cycles of recurrent selection for increased oil content in oat , 2001, Euphytica.

[312]  D. Stuthman Oat breeding and genetics , 1995 .

[313]  W. Powell Environmental and Genetical Aspects of Pollen Embryogenesis , 1990 .

[314]  K. Suwabe,et al.  Isolation and characterization of microsatellites in Brassica rapa L. , 2002, Theoretical and Applied Genetics.

[315]  A. Schulman,et al.  Mapping of genes affecting linolenic acid content in Brassica rapa ssp. oleifera , 2002, Molecular Breeding.

[316]  B. Das,et al.  Agrobacterium-mediated Transformation of Brassica juncea with a Cyanobacterial (Synechocystis PCC6803) Delta-6 Desaturase Gene Leads to Production of Gamma-linolenic Acid , 2006, Plant Cell, Tissue and Organ Culture.

[317]  J. Holland,et al.  Nine Cycles of Recurrent Selection for Increased Groat‐Oil Content in Oat , 1999 .

[318]  G. Foster,et al.  Molecular Identification of Oat Mosaic Virus as a Bymovirus , 2001, European Journal of Plant Pathology.

[319]  S. Stymne,et al.  Accumulation of storage products in oat during kernel development. , 2000, Biochemical Society Transactions.

[320]  J. Holland,et al.  A linkage map of hexaploid oat based on grass anchor DNA clones and its relationship to other oat maps. , 2001, Genome.

[321]  Environmental risk assessment of genetically modified crops: The use of molecular markers to trace insect and wind dispersal of Brassica napus pollen. , 2004 .

[322]  V. Lombard,et al.  Genetic Relationships and Fingerprinting of Rapeseed Cultivars by AFLP: Consequences for Varietal Registration , 2000 .

[323]  Christopher Preston,et al.  Risks of gene flow from transgenic herbicide-resistant canola (Brassica napus) to weedy relatives in southern Australian cropping systems , 1999 .

[324]  I. Tamm Genetic and environmental variation of grain yield of oat varieties , 2003 .

[325]  Q. Chen,et al.  Genomic in situ hybridization in Avena sativa. , 1994, Genome.

[326]  P. Raymer Canola: an emerging oilseed crop. , 2002 .

[327]  K. Dehesh How can we genetically engineer oilseed crops to produce high levels of medium‐chain fatty acids? , 2001 .

[328]  I. Loskutov Interspecific Crosses in the Genus Avena L. , 2001, Russian Journal of Genetics.

[329]  D. Pella,et al.  Effect of an Indo-Mediterranean diet on progression of coronary artery disease in high risk patients (Indo-Mediterranean Diet Heart Study): a randomised single-blind trial , 2002, The Lancet.

[330]  W. Diepenbrock,et al.  Measurement and modelling of canopy gas exchange of oilseed rape , 2005 .

[331]  Saleh Shah,et al.  Growth of transgenic canola (Brassica napus cv. Westar) expressing a bacterial 1-aminocyclopropane-1-carboxylate (ACC) deaminase gene on high concentrations of salt , 2006 .

[332]  R. Welch The chemical composition of oats , 1995 .

[333]  K. Skryabin,et al.  Optimization of the protocol for constructing transgenic plants of the cabbage Brassica oleracea var. capitata , 2006, Applied Biochemistry and Microbiology.

[334]  J. Burke,et al.  Effect of nitrogen, seed rate and plant growth regulator (chlormequat chloride) on the grain quality of oats (Avena sativa) , 2003, The Journal of Agricultural Science.

[335]  K. Leonard,et al.  Quantitative Trait Loci Associated with Seedling Resistance to Isolates of Puccinia coronata in Oat. , 2003, Phytopathology.

[336]  J. Murphy,et al.  Moving beyond the Winter Hardiness Plateau in U.S. Oat Germplasm , 2004 .

[337]  M. Liebig,et al.  Crop sequence effects of 10 crops in the northern Great Plains , 2006 .

[338]  P. Lemaux,et al.  High-frequency transformation of oat via microprojectile bombardment of seed-derived highly regenerative cultures , 1999 .

[339]  D. Pental,et al.  A high-density linkage map in Brassica juncea (Indian mustard) using AFLP and RFLP markers , 2003, Theoretical and Applied Genetics.

[340]  S. Helliwell,et al.  Fatty acid composition of lipids of Australian oats , 1998 .

[341]  G. Thomas,et al.  RAPD markers on seed bulks efficiently assess the genetic diversity of a Brassica oleracea L. collection , 1999, Theoretical and Applied Genetics.

[342]  C. Dean,et al.  Collinearity between a 30-centimorgan segment of Arabidopsis thaliana chromosome 4 and duplicated regions within the Brassica napus genome. , 1998, Genome.

[343]  C. Willenborg,et al.  Oat Caryopsis Size and Genotype Effects on Wild Oat–Oat Competition , 2005 .

[344]  D. Barton,et al.  Microsomal Lyso-Phosphatidic Acid Acyltransferase from a Brassica oleracea Cultivar Incorporates Erucic Acid into the sn-2 Position of Seed Triacylglycerols , 1995, Plant physiology.

[345]  Adrian C. Newton,et al.  Susceptibility of oat cultivars to groat discoloration: causes and remedies , 2003 .

[346]  J. Ohlrogge Design of New Plant Products: Engineering of Fatty Acid Metabolism , 1994, Plant physiology.

[347]  N. Wilhelmová Plant Lipid Biosynthesis. Fundamentals and Agricultural Applications , 1999, Photosynthetica.

[348]  R. A. Evans,et al.  A mannose selection system for production of fertile transgenic maize plants from protoplasts , 2000, Plant Cell Reports.

[349]  C. Langley,et al.  Comparing the Linkage Maps of the Close Relatives Arabidopsis lyrata and A. thaliana , 2004, Genetics.

[350]  H. Thomas,et al.  Oat evolution and cytogenetics , 1995 .

[351]  S. Stymne,et al.  PRODUCTION OF WAX ESTERS IN CRAMBE , 2006 .

[352]  J. Han,et al.  Production of fertile transgenic Brassica napus by Agrobacterium-mediated transformation of protoplasts , 2005 .

[353]  P. R. Scott,et al.  Plant disease: a threat to global food security. , 2005, Annual review of phytopathology.

[354]  Zhongda Liu,et al.  Antisense suppression of deoxyhypusine synthase by vacuum‐infiltration of Agrobacterium enhances growth and seed yield of canola , 2005 .

[355]  W. Meijer,et al.  Analysis of crop performance in research on inulin, fibre and oilseed crops , 1996 .

[356]  J. Perkowski,et al.  Susceptibility of oat genotypes to Fusarium crookwellense Burgess, Nelson and Toussoun infection and mycotoxin accumulation in kernels , 2004 .

[357]  Olaf Christen,et al.  Effects of nitrogen source and rate on productivity and quality of winter oilseed rape (Brassica napus L.) grown in different crop rotations , 2005 .

[358]  E. Virtanen,et al.  Gastrointestinal Effects of Oat Bran and Oat Gum: A Review , 2001 .

[359]  W. Nyquist,et al.  Evaluation of Eleven Introductions of Crambe, Crambe abyssinica Hochst1 , 1966 .

[360]  P. Sanders,et al.  Expression of bacterial genes in plant cells. , 1983, Proceedings of the National Academy of Sciences of the United States of America.

[361]  Nobuyoshi Nakajima,et al.  Monitoring the escape of transgenic oilseed rape around Japanese ports and roadsides. , 2005, Environmental biosafety research.

[362]  W. Claupein,et al.  Population dynamics of volunteer oilseed rape (Brassica napus L.) affected by tillage , 2004 .

[363]  D. I. McGregor,et al.  Brassica Oilseeds: Production and Utilization , 1995 .

[364]  K. Hammer,et al.  Are the duplicates of perennial kale (Brassica oleracea L. var. ramosa DC.) true duplicates as determined by RAPD analysis? , 1998, Genetic Resources and Crop Evolution.

[365]  Jinguo Hu,et al.  Identification of broccoli and cauliflower cultivars with RAPD markers , 1991, Plant Cell Reports.

[366]  D. Somers,et al.  Tissue specificity of the sugarcane bacilliform virus promoter in oat, barley and wheat , 2004, Molecular Breeding.

[367]  M. Lee,et al.  Genomic regions controlling vernalization and photoperiod responses in oat , 2002, Theoretical and Applied Genetics.

[368]  O. Elen,et al.  Natural Fusarium Grain Infection Level in Wheat, Barley and Oat after Early Application of Fungicides and Herbicides , 2005 .

[369]  J. G. Parsons,et al.  Distribution of lipids in embryonic axis, bran-endosperm, and hull fractions of hulless barley and hulless oat grain , 1979 .

[370]  D. Taylor,et al.  Utility of the Arabidopsis FAE1 and yeast SLC1-1 genes for improvements in erucic acid and oil content in rapeseed. , 2000, Biochemical Society transactions.

[371]  M. Joersbo Advances in the selection of transgenic plants using non-antibiotic marker genes. , 2001, Physiologia plantarum.

[372]  F. P. Cuperus,et al.  Composition and physical properties of oils from new oilseed crops , 1992 .

[373]  B. Karlsson,et al.  Comparison of rapeseed cultivars and resynthesized lines based on allozyme and RFLP markers , 1995, Theoretical and Applied Genetics.

[374]  A. Kilian,et al.  Diversity arrays: a solid state technology for sequence information independent genotyping. , 2001, Nucleic acids research.

[375]  R. Lal World crop residues production and implications of its use as a biofuel , 2005 .

[376]  H. Davies,et al.  Lysophosphatidic Acid Acyltransferase from Meadowfoam Mediates Insertion of Erucic Acid at the sn-2 Position of Triacylglycerol in Transgenic Rapeseed Oil , 1995, Plant physiology.

[377]  J. Dons,et al.  Selective agents and marker genes for use in transformation of monocotyledonous plants , 1993, Plant Molecular Biology Reporter.

[378]  P. Charest,et al.  Agrobacterium-mediated transformation of thin cell layer explants from Brassica napus L. , 1988, Theoretical and Applied Genetics.

[379]  A. Ordás,et al.  Relationships Among Brassica napus (L.) Germplasm from Spain and Great Britain as Determined by RAPD Markers , 2005, Genetic Resources and Crop Evolution.

[380]  R. Wise,et al.  Crown Rust Resistance Loci on Linkage Groups 4 and 13 in Cultivated Oat , 1996 .

[381]  T. Thorpe,et al.  Genetic transformation technology: Status and problems , 2005, In Vitro Cellular & Developmental Biology - Plant.

[382]  I. Rajcan,et al.  Evaluation of cytoplasmic effects on agronomic and seed quality traits in two doubled haploid populations of Brassica napus L. , 2002, Euphytica.

[383]  W. Friedt,et al.  Molecular markers in Brassica oilseed breeding: current status and future possibilities , 2004 .

[384]  R. Wu,et al.  Isolation of an efficient actin promoter for use in rice transformation. , 1990, The Plant cell.

[385]  Marc Anderson,et al.  Crambe, Crambe abyssinica Hochst., as a flea beetle resistant crop (Coleoptera: Chrysomelidae). , 1992 .

[386]  J. Yu,et al.  Inheritance and mapping of a powdery mildew resistance gene introgressed from Avena macrostachya in cultivated oat , 2006, Theoretical and Applied Genetics.

[387]  D. Somers,et al.  Genetic Engineering of Oat , 1994 .

[388]  E. Hammond,et al.  Changes in fatty acid composition associated with recurrent selection for groat-oil content in oat , 1991, Euphytica.

[389]  G.-W. Rathke,et al.  Energy balance of winter oilseed rape (Brassica napus L.) cropping as related to nitrogen supply and preceding crop , 2006 .

[390]  C. Halldén,et al.  Evaluation of RFLP and RAPD markers in a comparison of Brassica napus breeding lines , 1994, Theoretical and Applied Genetics.

[391]  R. Andersson,et al.  Avenanthramides in oats (Avena sativa L.) and structure-antioxidant activity relationships. , 2003, Journal of agricultural and food chemistry.

[392]  W. Diepenbrock Yield analysis of winter oilseed rape (Brassica napus L.): a review , 2000 .

[393]  G. Dongowski,et al.  Dietary fibre-rich oat-based products affect serum lipids, microbiota, formation of short-chain fatty acids and steroids in rats , 2005, British Journal of Nutrition.

[394]  L. Josefsson,et al.  Deletion analysis of a 2S seed storage protein promoter of Brassica napus in transgenic tobacco , 1993, Plant Molecular Biology.

[395]  K. Boivin,et al.  The Arabidopsis Genome Sequence as a Tool for Genome Analysis in Brassicaceae. A Comparison of the Arabidopsis and Capsella rubella Genomes1[w] , 2004, Plant Physiology.

[396]  T. Aung,et al.  The transfer of the gene for mildew resistance from Avena barbata (4x) into the cultivated oat A. sativa by an induced translocation , 1977, Euphytica.

[397]  R. Brettell,et al.  Foreign gene expression in transgenic cereals , 1994 .

[398]  G. A. White,et al.  Preliminary assessment of Crambe germplasm resources , 1975, Euphytica.

[399]  M. Herrmann,et al.  Characterisation of new oat germplasm for resistance to powdery mildew , 2004, Euphytica.

[400]  P. McVetty,et al.  STELLAR LOW LINOLENIC-HIGH LINOLEIC ACID SUMMER RAPE , 1988 .

[401]  M. Trick,et al.  Efficient large-scale development of microsatellites for marker and mapping applications in Brassica crop species , 2003, Theoretical and Applied Genetics.

[402]  F. Zou,et al.  Comparison of a Brassica oleracea genetic map with the genome of Arabidopsis thaliana. , 2003, Genetics.

[403]  J. King,et al.  TEMPERATURE EFFECTS ON GERMINATION OF RAPESEED (Brassica napus L. AND B. campestris L.) , 1983 .

[404]  M. Bevan,et al.  Localization of sequences in wheat endosperm protein genes which confer tissue‐specific expression in tobacco , 1987, The EMBO journal.

[405]  M. J. Adams,et al.  Purification and some properties of oat golden stripe virus , 1988 .

[406]  Y. Shim,et al.  The relationship between induction of embryogenesis and chromosome doubling in microspore cultures , 2006, Protoplasma.

[407]  J. S. Heslop-Harrison,et al.  The Close Relationship Between the A and B Genomes in Avena L. (Poaceae) Determined by Molecular Cytogenetic Analysis of Total Genomic, Tandemly and Dispersed Repetitive DNA Sequences , 1997 .

[408]  W. Phippen,et al.  Molecular characterization can quantify and partition variation among genebank holdings: a case study with phenotypically similar accessions of Brassica oleracea var. capitata L. (cabbage) `Golden Acre' , 1997, Theoretical and Applied Genetics.

[409]  P. W. Lane,et al.  Modelling seedbank dynamics of volunteer oilseed rape (Brassica napus) , 2005 .

[410]  G. Scoles,et al.  Tracing the phylogeny of the hexaploid oat Avena sativa with satellite DNAs. , 2000 .

[411]  M. Martínez,et al.  PILOT PLANT STUDIES OF BIODIESEL PRODUCTION USING BRASSICA CARINATA AS RAW MATERIAL , 2005 .

[412]  P. Lemaux,et al.  Genetic transformation of commercial cultivars of oat (Avena sativa L.) and barley (Hordeum vulgare L.) using in vitro shoot meristematic cultures derived from germinated seedlings , 1999, Plant Cell Reports.

[413]  Yiqi Luo,et al.  Elevated CO2 stimulates net accumulations of carbon and nitrogen in land ecosystems: a meta-analysis. , 2006, Ecology.

[414]  G. Scoles,et al.  The development of oat microsatellite markers and their use in identifying relationships among Avena species and oat cultivars , 2000, Theoretical and Applied Genetics.

[415]  S. Hokanson,et al.  The Opportunity for Escape of Engineered Genes from Transgenic Crops , 1996 .

[416]  S. Kresovich,et al.  Identities and Relationships among Chinese Vegetable Brassicas as Determined by Random Amplified Polymorphic DNA Markers , 1995 .

[417]  I. Bancroft,et al.  Comparative physical mapping of segments of the genome of Brassica oleracea var. alboglabra that are homoeologous to sequenced regions of chromosomes 4 and 5 of Arabidopsis thaliana. , 2000, The Plant journal : for cell and molecular biology.

[418]  B. Olsson,et al.  Generation and analysis of 9792 EST sequences from cold acclimated oat, Avena sativa , 2005, BMC Plant Biology.

[419]  F. Okkels,et al.  A novel principle for selection of transgenic plant cells: positive selection , 1996, Plant Cell Reports.

[420]  W. Ecke,et al.  Mapping a high oleic acid mutation in winter oilseed rape (Brassica napus L.) , 2000, Theoretical and Applied Genetics.

[421]  S. Mikkelsen,et al.  Supplementary Report from the Danish Working Group on the co-existence of genetically modified crops with conventional and organic crops: update of the 2003 Report. , 2007 .

[422]  W. Fehr,et al.  Seed physiological performance of soybeans with altered saturated fatty acid contents , 2001, Seed Science Research.

[423]  Mark A. Smith,et al.  Expression of the FAE1 gene and FAE1 promoter activity in developing seeds of Arabidopsis thaliana , 2001, Plant Molecular Biology.

[424]  Sven Bernesson,et al.  A limited LCA comparing large- and small-scale production of rape methyl ester (RME) under Swedish conditions , 2004 .

[425]  Göran Berndes,et al.  Bioenergy and water - the implications of large-scale bioenergy production for water use and supply. , 2002 .

[426]  C. Gless,et al.  Transgenic oat plants obtained at high efficiency by microprojectile bombardment of leaf base segments , 1998 .

[427]  Shijian Xu,et al.  Transcriptional regulation network of cold-responsive genes in higher plants , 2005 .

[428]  J. H. Williams,et al.  Registration of ‘Belann’ and ‘Belenzian’ Crambe , 1986 .

[429]  J. Williams,et al.  Characterization of genetic identities and relationships of Brassica oleracea L. via a random amplified polymorphic DNA assay , 1992, Theoretical and Applied Genetics.

[430]  W. Ecke,et al.  Abundance, polymorphism and genetic mapping of microsatellites in oilseed rape (Brassica napus L.) , 1999 .

[431]  D. Gross,et al.  Pseudomonas syringae Phytotoxins: Mode of Action, Regulation, and Biosynthesis by Peptide and Polyketide Synthetases , 1999, Microbiology and Molecular Biology Reviews.

[432]  R. Tsien,et al.  Engineering green fluorescent protein for improved brightness, longer wavelengths and fluorescence resonance energy transfer , 1996, Current Biology.

[433]  V. Meier,et al.  Heritabilities of Some Agronomic Characters for the Interspecific Cross of Crambe abyssinica and C. hispanica 1 , 1973 .

[434]  B. Diers,et al.  Relationship between heterosis and genetic distance based on restriction fragment length polymorphism markers in oilseed rape (Brassica napus L.). , 1996 .

[435]  A. Riaz,et al.  Genetic diversity of oilseed Brassica napus inbred lines based on sequence‐related amplified polymorphism and its relation to hybrid performance , 2001 .

[436]  P. Tanhuanpää,et al.  Mapping of a QTL for oleic acid concentration in spring turnip rape (Brassica rapa ssp. oleifera) , 1996, Theoretical and Applied Genetics.

[437]  P. McVetty,et al.  Hero summer rape , 1991 .

[438]  M. T. Sorensen,et al.  Antioxidative and oxidative status in muscles of pigs fed rapeseed oil, vitamin E, and copper. , 1999, Journal of animal science.

[439]  K. Shinozaki,et al.  Regulatory network of gene expression in the drought and cold stress responses. , 2003, Current opinion in plant biology.

[440]  I. Rajcan,et al.  Detection of molecular markers associated with linolenic and erucic acid levels in spring rapeseed (Brassica napur L.) , 1999, Euphytica.

[441]  W. May,et al.  Effects of relative time of emergence and density of wild oat (Avena fatua L.) on oat quality , 2005 .

[442]  J. Jannink,et al.  Expanding the pool of PCR-based markers for oat , 2005 .

[443]  P. Lemaux,et al.  Transformation of recalcitrant barley cultivars through improvement of regenerability and decreased albinism , 1998 .

[444]  D. Auld,et al.  Rapeseed Mutants with Reduced Levels of Polyunsaturated Fatty Acids and Increased Levels of Oleic Acid , 1992 .

[445]  Michael Lee,et al.  QTLs and epistasis associated with vernalization responses in oat , 1997 .

[446]  N. Mendham,et al.  Physiology: Crop Development, Growth and Yield , 1995 .

[447]  L. Cattivelli,et al.  Use of chlorophyll fluorescence to evaluate the cold acclimation and freezing tolerance of winter and spring oats , 2001 .

[448]  L. Buchwaldt,et al.  Compendium of brassica diseases. , 2007 .

[449]  A. C. Kennedy,et al.  Effect of tillage, fungicide seed treatment, and soil fumigation on seed bank dynamics of wild oat (Avena fatua) , 2004, Weed Science.

[450]  C. Quirós,et al.  7 Genome structure and mapping , 1999 .

[451]  M. Delseny,et al.  Cloning and molecular characterization of the Fatty Acid Elongase 1 (FAE 1) gene from high and low erucic acid lines of Brassica campestris and Brassica oleracea , 2002 .

[452]  William R. Raun,et al.  Improving Nitrogen Use Efficiency for Cereal Production , 1999 .

[453]  P. Bhalla,et al.  RAPD analysis of seed purity in a commercial hybrid cabbage (Brassica oleracea var. capitata) cultivar. , 2000, Genome.