Sequential M-estimation

We propose a sequential M-estimation algorithm as an alternative to sequential least squares. Being an approximation of the exact M-estimator, the proposed technique is robust to nonGaussian processes and outperforms sequential least squares. Simulation results demonstrate the power of the proposed sequential M-estimator.

[1]  B. Ripley,et al.  Robust Statistics , 2018, Encyclopedia of Mathematical Geosciences.

[2]  H. Vincent Poor,et al.  Robust multiuser detection in non-Gaussian channels , 1999, IEEE Trans. Signal Process..

[3]  Yee Hong Leung,et al.  On the computational aspect of robust multiuser detection , 2003, Proceedings of the 3rd IEEE International Symposium on Signal Processing and Information Technology (IEEE Cat. No.03EX795).

[4]  Abdelhak M. Zoubir,et al.  Adaptive ML signal detection in non-Gaussian channels , 2003, IEEE Workshop on Statistical Signal Processing, 2003.

[5]  Gene H. Golub,et al.  Matrix computations , 1983 .

[6]  Peter J. Huber,et al.  Robust Statistics , 2005, Wiley Series in Probability and Statistics.

[7]  P. J. Huber Robust Regression: Asymptotics, Conjectures and Monte Carlo , 1973 .

[8]  Frederick R. Forst,et al.  On robust estimation of the location parameter , 1980 .

[9]  Steven Kay,et al.  Fundamentals Of Statistical Signal Processing , 2001 .