A new compact difference scheme for second derivative in non-uniform grid expressed in self-adjoint form
暂无分享,去创建一个
[1] Joel Ferziger,et al. Higher Order Methods for Incompressible Fluid Flow: by Deville, Fischer and Mund, Cambridge University Press, 499 pp. , 2003 .
[2] R. Hirsh,et al. Higher order accurate difference solutions of fluid mechanics problems by a compact differencing technique , 1975 .
[3] J. Soria,et al. Accelerated flow past a symmetric aerofoil: experiments and computations , 2007, Journal of Fluid Mechanics.
[4] G. Carnevale,et al. Emergence and evolution of triangular vortices , 1994, Journal of Fluid Mechanics.
[5] J. Hesthaven,et al. Convergent Cartesian Grid Methods for Maxwell's Equations in Complex Geometries , 2001 .
[6] Tapan K. Sengupta,et al. A new combined stable and dispersion relation preserving compact scheme for non-periodic problems , 2009, J. Comput. Phys..
[7] C. Canuto. Spectral methods in fluid dynamics , 1991 .
[8] Z. Kopal,et al. Numerical analysis , 1955 .
[9] Tapan K. Sengupta,et al. High Accuracy Schemes for DNS and Acoustics , 2006, J. Sci. Comput..
[10] Tapan K. Sengupta,et al. Further improvement and analysis of CCD scheme: Dissipation discretization and de-aliasing properties , 2009, J. Comput. Phys..
[11] S. Lele. Compact finite difference schemes with spectral-like resolution , 1992 .
[12] W. Spotz. Formulation and experiments with high‐order compact schemes for nonuniform grids , 1998 .
[13] Henk A. van der Vorst,et al. Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for the Solution of Nonsymmetric Linear Systems , 1992, SIAM J. Sci. Comput..
[14] Shlomo Ta'asan,et al. Finite difference schemes for long-time integration , 1994 .
[15] Ch. Hirsch,et al. Fundamentals Of Computational Fluid Dynamics , 2016 .
[16] O. Botella,et al. BENCHMARK SPECTRAL RESULTS ON THE LID-DRIVEN CAVITY FLOW , 1998 .
[17] G. Carey,et al. High‐order compact scheme for the steady stream‐function vorticity equations , 1995 .
[18] M. Beckers,et al. The observation of a triangular vortex in a rotating fluid , 1998 .
[19] S. Orszag. Spectral methods for problems in complex geometries , 1980 .
[20] D. Gottlieb,et al. Numerical analysis of spectral methods : theory and applications , 1977 .
[21] T. K. Sengupta,et al. Error dynamics: Beyond von Neumann analysis , 2007, J. Comput. Phys..
[22] Y. Adam,et al. Highly accurate compact implicit methods and boundary conditions , 1977 .
[23] P. Chu,et al. A Three-Point Combined Compact Difference Scheme , 1998 .
[24] Tapan K. Sengupta,et al. Orthogonal grid generation for Navier-Stokes computations , 1998 .
[25] Tapan K. Sengupta,et al. Analysis of central and upwind compact schemes , 2003 .
[26] Tomas Bohr,et al. Polygons on a rotating fluid surface. , 2005, Physical review letters.
[27] Sanjiva K. Lele,et al. Numerical Method for Incompressible Vortical Flows with Two Unbounded Directions , 1997 .
[28] Rajendra K. Ray,et al. A transformation‐free HOC scheme for incompressible viscous flows on nonuniform polar grids , 2009 .
[29] T. Sengupta,et al. Mixed convection flow past a vertical plate: Stability analysis and its direct simulation , 2009 .
[30] Herman Branover. Nonlinear Localized Disturbances in an Adverse Pressure Gradient Boundary-Layer Transition: Experiment and Linear Stability A n a l y s i s , 1998 .
[31] P. Roache. Fundamentals of computational fluid dynamics , 1998 .
[32] J. C. Kalita,et al. A transformation‐free HOC scheme for steady convection–diffusion on non‐uniform grids , 2004 .
[33] P. Fischer,et al. High-Order Methods for Incompressible Fluid Flow , 2002 .
[34] D. Gottlieb,et al. Numerical analysis of spectral methods , 1977 .