Neural Fuzzy Intelligent Agents

An intelligent agent must both learn what a user likes or dislikes and search databases on behalf of the user. A neural fuzzy system can learn an agent profile of a user when it samples user question-answer data. A fuzzy system uses if-then rules to store and compress the agent’s knowledge of the user’s likes and dislikes. A neural system uses training data to form and tune the rules. The profile is a preference map or a bumpy utility surface defined over the space of search objects. Rules define fuzzy patches that cover the surface bumps as learning unfolds and as the fuzzy agent system gives a finer approximation of the profile. The agent system searches for preferred objects with the learned profile and with a new fuzzy measure of similarity. The appendix derives the supervised learning law that tunes this matching measure with fresh sample data. We test the fuzzy agent profile system on object spaces of flowers and sunsets and test the fuzzy agent matching system on an object space of sunset images. Rule explosion and data acquisition impose fundamental limits on the system designs as they do for all fuzzy systems.

[1]  G. A. Miller THE PSYCHOLOGICAL REVIEW THE MAGICAL NUMBER SEVEN, PLUS OR MINUS TWO: SOME LIMITS ON OUR CAPACITY FOR PROCESSING INFORMATION 1 , 1956 .

[2]  A. Kirman,et al.  Introduction to Equilibrium Analysis , 1977 .

[3]  T. L. Saaty A Scaling Method for Priorities in Hierarchical Structures , 1977 .

[4]  R. L. Keeney,et al.  Decisions with Multiple Objectives: Preferences and Value Trade-Offs , 1977, IEEE Transactions on Systems, Man, and Cybernetics.

[5]  Allen and Rosenbloom Paul S. Newell,et al.  Mechanisms of Skill Acquisition and the Law of Practice , 1993 .

[6]  G. Debreu Mathematical Economics: Representation of a preference ordering by a numerical function , 1983 .

[7]  T. Saaty Axiomatic foundation of the analytic hierarchy process , 1986 .

[8]  P. Harker Incomplete pairwise comparisons in the analytic hierarchy process , 1987 .

[9]  Allen Newell,et al.  SOAR: An Architecture for General Intelligence , 1987, Artif. Intell..

[10]  P. Harker,et al.  Globally effective questioning in the Analytic Hierarchy Process , 1990 .

[11]  Yaser S. Abu-Mostafa,et al.  Learning from hints in neural networks , 1990, J. Complex..

[12]  Jon Doyle,et al.  Preferential Semantics for Goals , 1991, AAAI.

[13]  Bart Kosko,et al.  Neural networks and fuzzy systems: a dynamical systems approach to machine intelligence , 1991 .

[14]  Rodney A. Brooks,et al.  Intelligence Without Reason , 1991, IJCAI.

[15]  Wade D. Cook,et al.  Ordinal Information and Preference Structures: Decision Models and Applications , 1992 .

[16]  Luc Steels,et al.  The artificial life roots of artificial intelligence , 1993 .

[17]  James M. Keller,et al.  A possibilistic approach to clustering , 1993, IEEE Trans. Fuzzy Syst..

[18]  P. Maes Modeling adaptive autonomous agents , 1993 .

[19]  Christos Faloutsos,et al.  QBIC project: querying images by content, using color, texture, and shape , 1993, Electronic Imaging.

[20]  R. Tibshirani,et al.  An introduction to the bootstrap , 1993 .

[21]  Terry Caelli,et al.  On the classification of image regions by colour, texture and shape , 1993, Pattern Recognit..

[22]  Michael R. Genesereth,et al.  Software agents , 1994, CACM.

[23]  Steven J. Plimpton,et al.  Massively parallel methods for engineering and science problems , 1994, CACM.

[24]  Alex Pentland,et al.  Photobook: tools for content-based manipulation of image databases , 1994, Electronic Imaging.

[25]  Randall D. Beer,et al.  Integrating reactive, sequential, and learning behavior using dynamical neural networks , 1994 .

[26]  William I. Grosky,et al.  Multimedia information systems , 1994, IEEE MultiMedia.

[27]  Marco Colombetti,et al.  Training Agents to Perform Sequential Behavior , 1994, Adapt. Behav..

[28]  T. Saaty Highlights and critical points in the theory and application of the Analytic Hierarchy Process , 1994 .

[29]  Bart Kosko,et al.  Fuzzy Systems as Universal Approximators , 1994, IEEE Trans. Computers.

[30]  Pattie Maes,et al.  Agents that reduce work and information overload , 1994, CACM.

[31]  Jeffrey S. Rosenschein,et al.  Designing Conventions for Automated Negotiation , 1994, AI Mag..

[32]  Luc Steels,et al.  The artificial life route to artificial intelligence : building embodied , 1995 .

[33]  Brian V. Funt,et al.  Color Constant Color Indexing , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[34]  Michael P. Wellman,et al.  A Simple Computational Market for Network Information Services , 1995, ICMAS.

[35]  Shih-Fu Chang,et al.  Extracting multidimensional signal features for content-based visual query , 1995, Other Conferences.

[36]  Victor R. Lesser,et al.  Issues in Automated Negotiation and Electronic Commerce: Extending the Contract Net Framework , 1997, ICMAS.

[37]  Jelena Kovacevic,et al.  Wavelets and Subband Coding , 2013, Prentice Hall Signal Processing Series.

[38]  James C. Bezdek,et al.  On cluster validity for the fuzzy c-means model , 1995, IEEE Trans. Fuzzy Syst..

[39]  B. Kosco Combining fuzzy systems , 1995, Proceedings of 1995 IEEE International Conference on Fuzzy Systems..

[40]  Bart Kosko,et al.  Optimal fuzzy rules cover extrema , 1995, Int. J. Intell. Syst..

[41]  W. S. Reilly,et al.  Natural Negotiation for Believable Agents , 1995 .

[42]  Pattie Maes,et al.  Artificial life meets entertainment: lifelike autonomous agents , 1995, CACM.

[43]  James C. Bezdek,et al.  Sequential Competitive Learning and the Fuzzy c-Means Clustering Algorithms , 1996, Neural Networks.

[44]  Eugene Santos,et al.  Acquiring Consistent Knowledge. , 1996 .

[45]  Marco Dorigo,et al.  Ant system: optimization by a colony of cooperating agents , 1996, IEEE Trans. Syst. Man Cybern. Part B.

[46]  Bart Kosko,et al.  Fuzzy Engineering , 1996 .

[47]  Nicholas R. Jennings,et al.  Neogotiation Through Argumentation - A Preliminary Report , 1996 .

[48]  B. Kosko,et al.  What is the best shape for a fuzzy set in function approximation? , 1996, Proceedings of IEEE 5th International Fuzzy Systems.

[49]  Pattie Maes,et al.  Kasbah: An Agent Marketplace for Buying and Selling Goods , 1996, PAAM.

[50]  Alexandros Moukas Amalthaea Information Discovery and Filtering Using a Multiagent Evolving Ecosystem , 1997, Appl. Artif. Intell..

[51]  Bart Kosko,et al.  Neural fuzzy motion estimation and compensation , 1997, IEEE Trans. Signal Process..

[52]  Alex Pentland,et al.  The ALIVE system: wireless, full-body interaction with autonomous agents , 1997, Multimedia Systems.

[53]  Bart Kosko,et al.  Neural Fuzzy Agents for Profile Learning and Adaptive Object Matching , 1998, Presence.