Estimation of the Maximum Earthquake Magnitude, mmax

This paper provides a generic equation for the evaluation of the maximum earthquake magnitude mmax for a given seismogenic zone or entire region. The equation is capable of generating solutions in different forms, depending on the assumptions of the statistical distribution model and/or the available information regarding past seismicity. It includes the cases (i) when earthquake magnitudes are distributed according to the doubly-truncated Gutenberg-Richter relation, (ii) when the empirical magnitude distribution deviates moderately from the Gutenberg-Richter relation, and (iii) when no specific type of magnitude distribution is assumed. Both synthetic, Monte-Carlo simulated seismic event catalogues, and actual data from Southern California, are used to demonstrate the procedures given for the evaluation of mmax.The three estimates of mmax for Southern California, obtained by the three procedures mentioned above, are respectively: 8.32 ± 0.43, 8.31 ± 0.42 and 8.34 ± 0.45. All three estimates are nearly identical, although higher than the value 7.99 obtained by Field et al. (1999). In general, since the third procedure is non-parametric and does not require specification of the functional form of the magnitude distribution, its estimate of the maximum earthquake magnitude mmax is considered more reliable than the other two which are based on the Gutenberg-Richter relation.

[1]  G. R. Toro,et al.  Model of Strong Ground Motions from Earthquakes in Central and Eastern North America: Best Estimates and Uncertainties , 1997 .

[2]  Kenneth W. Campbell,et al.  Bayesian analysis of extreme earthquake occurrences. Part II. Application to the San Jacinto fault zone of southern California , 1983 .

[3]  D. Wells,et al.  New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement , 1994, Bulletin of the Seismological Society of America.

[4]  A. Kijko Estimation of the Maximum Earthquake Magnitude , 2003 .

[5]  Steven G. Wesnousky,et al.  Earthquake size as a function of fault slip rate , 1996, Bulletin of the Seismological Society of America.

[6]  Yan Y. Kagan,et al.  Seismic moment distribution , 1991 .

[7]  T. Hanks,et al.  M ≧ 6 earthquakes in southern California during the twentieth century: No evidence for a seismicity or moment deficit , 1998, Bulletin of the Seismological Society of America.

[8]  A. Kijko,et al.  Seismic hazard assessment for the main seismogenic zones in the Eastern Alps , 1991 .

[9]  Maximum Likelihood Estimation of a Translation Parameter of a Truncated Distribution , 1973 .

[10]  R. Musson,et al.  Constraints on the frequency-magnitude relation and maximum magnitudes in the UK from observed seismicity and glacio-isostatic recovery rates , 2002 .

[11]  Andrzej Kijko,et al.  Parametric-historic Procedure for Probabilistic Seismic Hazard Analysis Part I: Estimation of Maximum Regional Magnitude mmax , 1998 .

[12]  Yan Y. Kagan,et al.  Seismic moment‐frequency relation for shallow earthquakes: Regional comparison , 1997 .

[13]  Andrzej Kijko,et al.  Estimation of earthquake hazard parameters from incomplete data files. Part II. Incorporation of magnitude heterogeneity , 1992 .

[14]  H. Shah,et al.  A Bayesian model for seismic hazard mapping , 1979 .

[15]  Andrzej Kijko,et al.  "Parametric-historic" Procedure for Probabilistic Seismic Hazard Analysis Part II: Assessment of Seismic Hazard at Specified Site , 1999 .

[16]  Douglas S. Robson,et al.  Estimation of a truncation point , 1964 .

[17]  V. Pisarenko,et al.  Statistical estimation of seismic hazard parameters: Maximum possible magnitude and related parameters , 1996, Bulletin of the Seismological Society of America.

[18]  A. Frankel Mapping Seismic Hazard in the Central and Eastern United States , 1995 .

[19]  Méthodes et techniques de l'analyse numérique , 1971 .

[20]  C. J. Stone,et al.  An Asymptotically Optimal Window Selection Rule for Kernel Density Estimates , 1984 .

[21]  A. Kijko,et al.  Estimate of earthquake hazard in the Vrancea (Romania) region , 1991 .

[22]  Haresh C. Shah Glossary of Terms for Probabilistic Seismic-Risk and Hazard Analysis , 1984 .

[23]  S. Ward More on Mmax , 1997, Bulletin of the Seismological Society of America.

[24]  R. Fisher The Advanced Theory of Statistics , 1943, Nature.

[25]  D. Weichert,et al.  Estimation of the earthquake recurrence parameters for unequal observation periods for different magnitudes , 1980 .

[26]  Bernard W. Silverman,et al.  Density Estimation for Statistics and Data Analysis , 1987 .

[27]  D. Sornette,et al.  General theory of the modified Gutenberg-Richter law for large seismic moments , 1999 .

[28]  K. Aki,et al.  Spatial and temporal correlation between coda Q and seismicity in China , 1988 .

[29]  A. Kijko,et al.  An introduction to mining seismology , 1994 .

[30]  G. Woo Kernel estimation methods for seismic hazard area source modeling , 1996, Bulletin of the Seismological Society of America.

[31]  Haresh C. Shah,et al.  Utilization of geophysical information in Bayesian seismic hazard model , 1984 .

[32]  Peter Hall,et al.  On Estimating the Endpoint of a Distribution , 1982 .

[33]  P. Cooke,et al.  Statistical inference for bounds of random variables , 1979 .

[34]  Luis Esteva,et al.  Statistics of small earthquakes and frequency of occurrence of large earthquakes along the Mexican subduction zone , 1983 .

[35]  Yan Y. Kagan,et al.  Testable Earthquake Forecasts for 1999 , 1999 .

[36]  Stanislaw Lasocki,et al.  Non-parametric Seismic Hazard in Mines , 2001 .

[37]  R. Hamilton Mean magnitude of an earthquake sequence , 1967 .

[38]  A. Kijko,et al.  Estimation of earthquake hazard parameters from incomplete data files. Part I. Utilization of extreme and complete catalogs with different threshold magnitudes , 1989 .

[39]  D. Sornette,et al.  Characterization of the Frequency of Extreme Earthquake Events by the Generalized Pareto Distribution , 2000, cond-mat/0011168.

[40]  Euan G. C. Smith,et al.  Comparison of Seismicity Models Generated by Different Kernel Estimations , 2002 .

[41]  János D. Pintér,et al.  Statistical Inference for the Bounds of Random Variables , 1991 .

[42]  Michael Woodroofe,et al.  Maximum Likelihood Estimation of Translation Parameter of Truncated Distribution II , 1974 .

[43]  G. Dargahi‐Noubary A procedure for estimation of the upper bound for earthquake magnitudes , 1983 .

[44]  M. Wyss,et al.  Mapping the frequency-magnitude distribution in asperities: An improved technique to calculate recurrence times? , 1997 .

[45]  Yan Y. Kagan,et al.  Observational evidence for earthquakes as a nonlinear dynamic process , 1994 .

[46]  John M. Nordquist,et al.  Theory of largest values applied to earthquake magnitudes , 1945 .

[47]  Mark D. Petersen,et al.  Seismic hazard estimate from background seismicity in southern California , 1996, Bulletin of the Seismological Society of America.

[48]  M. Hamdache Seismic Hazard Assessment for the Main Seismogenic Zones in North Algeria , 1998 .

[49]  J. Enrique Luco,et al.  Consequences of slip rate constraints on earthquake occurrence relations , 1983 .

[50]  Maurice G. Kendall The advanced theory of statistics , 1958 .

[51]  D. P. Schwartz,et al.  Fault behavior and characteristic earthquakes: Examples from the Wasatch and San Andreas Fault Zones , 1984 .

[52]  David A. Rhoades,et al.  On the handling of uncertainties in estimating the hazard of rupture on a fault segment , 1994 .

[53]  M. Woodroofe Maximum Likelihood Estimation of a Translation Parameter of a Truncated Distribution , 1972 .

[54]  Kenneth W. Campbell,et al.  BAYESIAN ANALYSIS OF EXTREME EARTHQUAKE OCCURRENCES. PART I. PROBABILISTIC HAZARD MODEL , 1982 .

[55]  David D. Jackson,et al.  A mutually consistent seismic-hazard source model for southern California , 1999 .

[56]  Mourad Bezzeghoud,et al.  Estimation of Seismic Hazard Parameters in the Northern Part of Algeria , 1998 .

[57]  David M. Perkins,et al.  Treatment of Parameter Uncertainty and Variability for a Single Seismic Hazard Map , 1993 .

[58]  Y. Kagan Seismic moment distribution revisited: I. Statistical results , 2002 .

[59]  Ian G. Main,et al.  Statistical physics, seismogenesis, and seismic hazard , 1996 .

[60]  M. Degroot Optimal Statistical Decisions , 1970 .

[61]  Robert A. Page,et al.  Aftershocks and microaftershocks of the great Alaska earthquake of 1964 , 1968 .

[62]  Yan Y. Kagan,et al.  Seismic moment distribution revisited: II. Moment conservation principle , 2002 .

[63]  A. McGarr,et al.  SOME APPLICATIONS OF SEISMIC SOURCE MECHANISM STUDIES TO ASSESSING UNDERGROUND HAZARD. , 1984 .

[64]  K. Shimazaki,et al.  Earthquake frequency distribution and the mechanics of faulting , 1983 .

[65]  P. J. Green,et al.  Density Estimation for Statistics and Data Analysis , 1987 .

[66]  P. Burton,et al.  Physical links between crustal deformation, seismic moment and seismic hazard for regions of varying seismicity , 1984 .

[67]  C. Frohlich Does maximum earthquake size depend on focal depth? , 1998, Bulletin of the Seismological Society of America.

[68]  D. Papastamatiou,et al.  Incorporation of crustal deformation to seismic hazard analysis , 1980 .

[69]  Giuliano F. Panza,et al.  Multi-scale seismicity model for seismic risk , 1997, Bulletin of the Seismological Society of America.

[70]  A. Kijko,et al.  Maximum likelihood estimation of earthquake hazard parameters in the Aegean area from mixed data , 1991 .

[71]  P. Cosentino,et al.  Truncated exponential frequency-magnitude relationship in earthquake statistics , 1977, Bulletin of the Seismological Society of America.