Design optimization of polymer electrooptic modulators

A versatile and numerically efficient finite-element method-based approach has been developed and used to solve the associated quasi-static Laplace equation for electrodes, the full-vectorial wave equation for optical waveguides, and the evolutionary beam-propagation method for bend designs, to characterize the Mach-Zehnder-based polymer modulators incorporating ridge-type waveguide structures. The effects of the rib height and the waveguide width on a single-mode operation, the symmetry of the beam profile, the insertion loss, and the bending loss of the polymer rib waveguides are presented. Further, the effect of the rib height, the waveguide width, and the electrode width on the key modulator parameters, such as VpiL, Nm, and Z c are presented, and as a consequence, an optimized design is reported

[1]  B. Rahman,et al.  Finite-element solution of integrated optical waveguides , 1984 .

[2]  Myung-Hyun Lee,et al.  Thermal stability enhancement of electrooptic polymer modulator , 2004, IEEE Photonics Technology Letters.

[3]  Christos Themistos,et al.  Design issues of a multimode interference-based 3-dB splitter. , 2002, Applied optics.

[4]  C. Zhang,et al.  Electrooptic polymer modulators with an inverted-rib waveguide structure , 2003, IEEE Photonics Technology Letters.

[5]  Xiang Zhang,et al.  Optimum design of coplanar waveguide for LiNbO/sub 3/ optical modulator , 1995 .

[6]  B. M. A. Rahman,et al.  Design considerations for an electrooptic directional coupler modulator , 1999 .

[7]  Jung Jin Ju,et al.  Polymer-Based Devices for Optical Communications , 2002 .

[8]  R. Soref,et al.  Large single-mode rib waveguides in GeSi-Si and Si-on-SiO/sub 2/ , 1991 .

[9]  J. Z. Zhu,et al.  The finite element method , 1977 .

[10]  Jung Jin Ju,et al.  16-arrayed electrooptic polymer modulator , 2004 .

[11]  H. Miyazawa,et al.  Design of ultra-broad-band LiNbO/sub 3/ optical modulators with ridge structure , 1995 .

[12]  G. W. Smith,et al.  Optimization of deep-etched, single-mode GaAs-AlGaAs optical waveguides using controlled leakage into the substrate , 1999 .

[13]  Shyqyri Haxha,et al.  Bandwidth estimation for ultra-high-speed lithium niobate modulators. , 2003, Applied optics.

[14]  N. Dagli Wide-bandwidth lasers and modulators for RF photonics , 1999 .

[15]  M. Peters,et al.  GaAs/AlGaAs travelling wave electro-optic modulator with an electrical bandwidth >40 GHz , 1996 .

[16]  G. Subramanyam,et al.  Microwave dielectric properties of DNA based polymers between 10 and 30 GHz , 2005, IEEE Microwave and Wireless Components Letters.

[17]  Makoto Minakata Recent progress of 40-GHz high-speed LiNbO3 optical modulator , 2001, ITCom.

[18]  P. Daly,et al.  Hybrid-Mode Analysis of Microstrip by Finite-Element Methods , 1971 .

[19]  H. Ogawa,et al.  Analysis of CPW for LiNbO/sub 3/ optical modulator by extended spectral-domain approach , 1992, IEEE Microwave and Guided Wave Letters.

[20]  Quasi-static analysis of electrooptic modulators by the method of lines , 1990 .

[21]  A. Vonsovici,et al.  The single-mode condition for semiconductor rib waveguides with large cross section , 1998 .

[22]  B. Rahman,et al.  Optimization of the optical properties of a deeply etched semiconductor electrooptic modulator , 2003 .

[23]  Sun Ho Kim,et al.  Finite-element method for the impedance analysis of traveling-wave modulators , 1990 .

[24]  Raj Mittra,et al.  Quasi-TEM Analysis of Microwave Transmission Lines by the Finite-Element Method , 1986 .

[25]  B.M.A. Rahman,et al.  New full-vectorial numerically efficient propagation algorithm based on the finite element method , 2000, Journal of Lightwave Technology.

[26]  L. Eldada,et al.  Advances in polymer integrated optics , 2000, IEEE Journal of Selected Topics in Quantum Electronics.

[27]  Masanori Koshiba,et al.  Finite-element modeling of broad-band traveling-wave optical modulators , 1999 .