A sparse representation scheme for angle estimation in monostatic MIMO radar

In this paper, the problem of direction of arrival (DOA) estimation for monostatic multiple-input multiple-output (MIMO) radar is addressed, and a sparse representation scheme for DOA estimation is proposed. Firstly, the reduced-dimensional transformation matrix and SVD-technique are utilized to reduce the computational complexity of the sparse signal reconstruction. Then the coefficients of the reduced-dimensional Capon (RD-Capon) spectrum are exploited to design a weight matrix for reweighting l"1 norm constraint minimization to enhance the sparsity of the solution, and the DOA can be estimated by finding the non-zero rows in the recovered matrix. The angle estimation performance of the proposed method is better than RD-ESPRIT and RD-Capon algorithms. Furthermore, the proposed method works well for coherence targets without any decorrelation procedure, and has low sensitivity to the priori information of the target number. Simulation results verify the effectiveness of the proposed method.

[1]  L.J. Cimini,et al.  MIMO Radar with Widely Separated Antennas , 2008, IEEE Signal Processing Magazine.

[2]  Dmitry M. Malioutov,et al.  A sparse signal reconstruction perspective for source localization with sensor arrays , 2005, IEEE Transactions on Signal Processing.

[3]  Jian Li,et al.  MIMO Radar with Colocated Antennas , 2007, IEEE Signal Processing Magazine.

[4]  Xiaofei Zhang,et al.  On the MUSIC-derived Approaches of Angle Estimation for Bistatic MIMO Radar , 2009, 2009 International Conference on Wireless Networks and Information Systems.

[5]  M. Viberg,et al.  Two decades of array signal processing research: the parametric approach , 1996, IEEE Signal Process. Mag..

[6]  Rick S. Blum,et al.  MIMO radar: an idea whose time has come , 2004, Proceedings of the 2004 IEEE Radar Conference (IEEE Cat. No.04CH37509).

[7]  Yiyu Zhou,et al.  Array Signal Processing via Sparsity-Inducing Representation of the Array Covariance Matrix , 2013, IEEE Transactions on Aerospace and Electronic Systems.

[8]  Chen Baixiao,et al.  Angle estimation using ESPRIT in MIMO radar , 2008 .

[9]  Jun Li,et al.  Joint DOD and DOA estimation for bistatic MIMO radar , 2009, Signal Process..

[10]  Dazhuan Xu,et al.  Low-complexity ESPRIT-based DOA estimation for colocated MIMO radar using reduced-dimension transformation , 2011 .

[11]  Jian Li,et al.  SPICE: A Sparse Covariance-Based Estimation Method for Array Processing , 2011, IEEE Transactions on Signal Processing.

[12]  Xianpeng Wang,et al.  Conjugate ESPRIT for DOA estimation in monostatic MIMO radar , 2013, Signal Process..

[13]  Jun Li,et al.  Multitarget Identification and Localization Using Bistatic MIMO Radar Systems , 2008, EURASIP J. Adv. Signal Process..

[14]  Stephen P. Boyd,et al.  Enhancing Sparsity by Reweighted ℓ1 Minimization , 2007, 0711.1612.

[15]  Chen Chen,et al.  Reduced-complexity Capon for direction of arrival estimation in a monostatic multiple-input multiple-output radar , 2012 .

[16]  Jos F. Sturm,et al.  A Matlab toolbox for optimization over symmetric cones , 1999 .

[17]  J. Yin,et al.  Direction-of-Arrival Estimation Using a Sparse Representation of Array Covariance Vectors , 2011, IEEE Transactions on Signal Processing.

[18]  Xianpeng Wang,et al.  Low-Complexity Method for Angle Estimation in MIMO Radar , 2012, IEICE Trans. Commun..

[19]  Sergiy A. Vorobyov,et al.  Transmit Energy Focusing for DOA Estimation in MIMO Radar With Colocated Antennas , 2010, IEEE Transactions on Signal Processing.

[20]  Nikos D. Sidiropoulos,et al.  Tensor Algebra and Multidimensional Harmonic Retrieval in Signal Processing for MIMO Radar , 2010, IEEE Transactions on Signal Processing.