ZrO2–ZnO–CeO2 integrated with nano-sized SAPO-34 zeolite for CO2 hydrogenation to light olefins

[1]  Jiale Huang,et al.  Direct CO2 Hydrogenation to Light Olefins over ZnZrOx Mixed with Hierarchically Hollow SAPO-34 with Rice Husk as Green Silicon Source and Template , 2022, Applied Catalysis B: Environmental.

[2]  Yuhan Sun,et al.  ZnZrOx integrated with chain-like nanocrystal HZSM-5 as efficient catalysts for aromatics synthesis from CO2 hydrogenation , 2021 .

[3]  Jiale Huang,et al.  Design and Synthesis of Bioinspired ZnZrOx&Bio-ZSM-5 Integrated Nanocatalysts to Boost CO2 Hydrogenation to Light Olefins , 2021 .

[4]  P. Lu,et al.  Tandem catalysis over tailored ZnO-ZrO2/MnSAPO-34 composite catalyst for enhanced light olefins selectivity in CO2 hydrogenation , 2021 .

[5]  F. Meng,et al.  A facile approach for fabricating highly active ZrCeZnO in combination with SAPO-34 for the conversion of syngas into light olefins , 2021 .

[6]  W. Ying,et al.  Syngas-to-olefins over MOF-derived ZnZrOx and SAPO-34 bifunctional catalysts , 2021 .

[7]  J. Juan,et al.  Effect of reaction conditions on the lifetime of SAPO-34 catalysts in methanol to olefins process – A review , 2021 .

[8]  Xinlin Hong,et al.  Highly dispersed metal doping to ZnZr oxide catalyst for CO2 hydrogenation to methanol: Insight into hydrogen spillover , 2020 .

[9]  Yuhan Sun,et al.  Novel Heterogeneous Catalysts for CO2 Hydrogenation to Liquid Fuels , 2020, ACS central science.

[10]  M. Nawaz,et al.  High Conversion to Aromatics via CO2-FT over a CO-Reduced Cu-Fe2O3 Catalyst Integrated with HZSM-5 , 2020 .

[11]  J. S. Lee,et al.  Recycling Carbon Dioxide through Catalytic Hydrogenation: Recent Key Developments and Perspectives , 2020 .

[12]  Dexin Yang,et al.  Electroreduction of CO2 in Ionic Liquid-Based Electrolytes , 2020, Innovation.

[13]  N. Tsubaki,et al.  Design of a core–shell catalyst: an effective strategy for suppressing side reactions in syngas for direct selective conversion to light olefins , 2020, Chemical science.

[14]  Xiao Jiang,et al.  Recent Advances in Carbon Dioxide Hydrogenation to Methanol via Heterogeneous Catalysis. , 2020, Chemical reviews.

[15]  Jianjian Wang,et al.  Methanol-to-Olefin Conversion over Small-Pore DDR Zeolites: Tuning the Propylene Selectivity via the Olefin-Based Catalytic Cycle , 2020 .

[16]  Guanchao Wang,et al.  Fabrication of ZnZrO2@Al2O3@SAPO-34 tandem catalyst for CO2 conversion to hydrocarbons , 2020 .

[17]  Wei Zhou,et al.  Highly Active ZnO-ZrO2 Aerogels Integrated with H-ZSM-5 for Aromatics Synthesis from Carbon Dioxide , 2020 .

[18]  N. Tsubaki,et al.  Direct CO2 hydrogenation to light olefins by suppressing CO by-product formation , 2019 .

[19]  Wei Li,et al.  The influence of crystallite size on the structural stability of Cu/SAPO-34 catalysts , 2019, Applied Catalysis B: Environmental.

[20]  X. Lai,et al.  Hydrogenation of CO2 to light olefins on CuZnZr@(Zn-)SAPO-34 catalysts: Strategy for product distribution , 2019, Fuel.

[21]  Yong-Hong Song,et al.  Defect-rich Ce1-xZrxO2 solid solutions for oxidative dehydrogenation of ethylbenzene with CO2 , 2019, Catalysis Today.

[22]  Marc D. Porosoff,et al.  Development of Tandem Catalysts for CO2 Hydrogenation to Olefins , 2019, ACS Catalysis.

[23]  Hailong Liu,et al.  Highly Selective Conversion of Carbon Dioxide to Aromatics over Tandem Catalysts , 2019, Joule.

[24]  J. Gascón,et al.  Heterogeneous Catalysis for the Valorization of CO2: Role of Bifunctional Processes in the Production of Chemicals , 2018, ACS Energy Letters.

[25]  Liguo Wang,et al.  Recent advances on the reduction of CO2 to important C2+ oxygenated chemicals and fuels , 2018, Chinese Journal of Chemical Engineering.

[26]  B. Liu,et al.  Oxygen Vacancy Promoting Dimethyl Carbonate Synthesis from CO2 and Methanol over Zr-Doped CeO2 Nanorods , 2018, ACS Catalysis.

[27]  Heyong He,et al.  Ceria‐Zirconia/Zeolite Bifunctional Catalyst for Highly Selective Conversion of Syngas into Aromatics , 2018, ChemCatChem.

[28]  Yuhan Sun,et al.  Role of zirconium in direct CO2 hydrogenation to lower olefins on oxide/zeolite bifunctional catalysts , 2018, Journal of Catalysis.

[29]  Hailong Liu,et al.  Highly Selective Conversion of Carbon Dioxide to Lower Olefins , 2017 .

[30]  A. Urakawa,et al.  CO2 -to-Methanol Hydrogenation on Zirconia-Supported Copper Nanoparticles: Reaction Intermediates and the Role of the Metal-Support Interface. , 2017, Angewandte Chemie.

[31]  Meng Li,et al.  Solvent-free synthesis of SAPO-34 nanocrystals with reduced template consumption for methanol-to-olefins process , 2017 .

[32]  Christopher W. Jones,et al.  Propane dehydrogenation catalyzed by gallosilicate MFI zeolites with perturbed acidity , 2017 .

[33]  Jihai Tang,et al.  HCl Oxidation for Sustainable Cl2 Recycle over the CexZr1–xO2 Catalysts: Effects of Ce/Zr Ratio on Activity and Stability , 2014 .

[34]  J. Y. Chiou,et al.  Effect of Co, Fe and Rh addition on coke deposition over Ni/Ce0.5Zr0.5O2 catalysts for steam reforming of ethanol , 2014 .

[35]  Atsushi Urakawa,et al.  Continuous DMC Synthesis from CO2 and Methanol over a CeO2 Catalyst in a Fixed Bed Reactor in the Presence of a Dehydrating Agent , 2014 .

[36]  Fang‐Xing Xiao Construction of highly ordered ZnO-TiO2 nanotube arrays (ZnO/TNTs) heterostructure for photocatalytic application. , 2012, ACS applied materials & interfaces.

[37]  De Chen,et al.  A methanol to olefins review: Diffusion, coke formation and deactivation on SAPO type catalysts , 2012 .

[38]  W. Li,et al.  The influence of silicon on the catalytic properties of Cu/SAPO-34 for NOx reduction by ammonia-SCR , 2012 .

[39]  S. Mintova,et al.  Nanosized SAPO-34 Synthesized from Colloidal Solutions , 2008 .

[40]  Weiguo Song,et al.  Methylbenzenes Are the Organic Reaction Centers for Methanol-to-Olefin Catalysis on HSAPO-34 , 2000 .