Parameter estimation with expected and residual-at-risk criteria
暂无分享,去创建一个
[1] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[2] Stephen P. Boyd,et al. Semidefinite Programming , 1996, SIAM Rev..
[3] D. Duffie,et al. An Overview of Value at Risk , 1997 .
[4] Laurent El Ghaoui,et al. Robust Solutions to Least-Squares Problems with Uncertain Data , 1997, SIAM J. Matrix Anal. Appl..
[5] Laurent El Ghaoui,et al. Robust Solutions to Uncertain Semidefinite Programs , 1998, SIAM J. Optim..
[6] Stephen P. Boyd,et al. Robust solutions to l/sub 1/, l/sub 2/, and l/sub /spl infin// uncertain linear approximation problems using convex optimization , 1998, Proceedings of the 1998 American Control Conference. ACC (IEEE Cat. No.98CH36207).
[7] D. Bertsimas,et al. Moment Problems and Semidefinite Optimization , 2000 .
[8] R. Rockafellar,et al. Conditional Value-at-Risk for General Loss Distributions , 2001 .
[9] Ali H. Sayed,et al. A Regularized Robust Design Criterion for Uncertain Data , 2001, SIAM J. Matrix Anal. Appl..
[10] Arkadi Nemirovski,et al. On Tractable Approximations of Uncertain Linear Matrix Inequalities Affected by Interval Uncertainty , 2002, SIAM J. Optim..
[11] Giuseppe Carlo Calafiore,et al. Near optimal solutions to least-squares problems with stochastic uncertainty , 2005, Syst. Control. Lett..
[12] Stephen P. Boyd,et al. Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.
[13] Paul Tseng,et al. Exact Regularization of Convex Programs , 2007, SIAM J. Optim..
[14] BoydDepartment,et al. Robust Solutions to l 1 , l 2 , and l 1 Uncertain LinearApproximation Problems using Convex Optimization 1 , 2007 .
[15] Giuseppe Carlo Calafiore,et al. Parameter estimation with expected and residual-at-risk criteria , 2009, Syst. Control. Lett..