Validation of ADS reactivity monitoring techniques in the Yalina-Booster subcritical assembly

[1]  G. R. Keepin,et al.  Physics of Nuclear Kinetics , 1967 .

[2]  D. Hetrick,et al.  Dynamics of nuclear reactors , 1972 .

[3]  Massimo Salvatores,et al.  The Physics of Subcritical Multiplying Systems , 2002 .

[4]  H. Abderrahim,et al.  Reactivity monitoring in ADS: Application to the MYRRHA ADS project , 2003 .

[5]  A. Herrera-Martinez,et al.  Transmutation of nuclear waste in accelerator-driven systems , 2007 .

[6]  David Villamarín Fernández Análisis dinámico del reactor experimental de fisión nuclear muse-4 , 2004 .

[7]  G. Rimpault,et al.  Neutronic Studies in Support of Accelerator-Driven Systems: The MUSE Experiments in the MASURCA Facility , 2004 .

[8]  Waclaw Gudowski,et al.  Analysis of reactivity determination methods in the subcritical experiment Yalina , 2005 .

[9]  George R. Imel,et al.  Advantage of the area-ratio pulsed neutron source technique for ADS reactivity calibration , 2006 .

[10]  E. González-Romero,et al.  Current-to-flux experimental results in the YALINA-Booster subcritical assembly , 2009 .

[11]  Cristian Rabiti,et al.  Pulse superimposition calculational methodology for estimating the subcriticality level of nuclear fuel assemblies , 2009 .

[12]  Spatial and Source Multiplication Effects on the Area Ratio Reactivity Determination Method in a Strongly Heterogeneous Subcritical System , 2010 .

[13]  Patrick Blaise,et al.  Reactor Physics Experiments on Zero Power Reactors , 2010 .

[14]  Yousry Gohar,et al.  Impact of the neutron detector choice on Bell and Glasstone spatial correction factor for subcriticality measurement , 2012 .

[15]  E. González-Romero,et al.  Evaluation of the criticality constant from Pulsed Neutron Source measurements in the Yalina-Booster subcritical assembly , 2013 .