Vascular Endothelial Growth Factor (VEGF)-driven Actin-based Motility Is Mediated by VEGFR2 and Requires Concerted Activation of Stress-activated Protein Kinase 2 (SAPK2/p38) and Geldanamycin-sensitive Phosphorylation of Focal Adhesion Kinase*

In endothelial cells, vascular endothelial growth factor (VEGF) induces an accumulation of stress fibers associated with new actin polymerization and rapid formation of focal adhesions at the ventral surface of the cells. This cytoskeletal reorganization results in an intense motogenic activity. Using porcine endothelial cells expressing one or the other type of the VEGF receptors, VEGFR1 or VEGFR2, or human umbilical vein endothelial cells pretreated with a VEGFR2 neutralizing antibody, we show that VEGFR2 is responsible for VEGF-induced activation of the stress-activated protein kinase-2/p38 (SAPK2/p38), phosphorylation of focal adhesion kinase (FAK), and enhanced migratory activity. Activation of SAPK2/p38 triggered actin polymerization whereas FAK, which was phosphorylated independently of SAPK2/p38, initiated assembly of focal adhesions. Both processes contributed to the formation of stress fibers. Geldanamycin, an inhibitor of HSP90 blocked tyrosine phosphorylation of FAK, assembly of focal adhesions, actin reorganization, and cell migration, all of which were reversed by overexpressing HSP90. We conclude that VEGFR2 mediates the physiological effect of VEGF on cell migration and that two independent pathways downstream of VEGFR2 regulate actin-based motility. One pathway involves SAPK2/p38 and leads to enhanced actin polymerization activity. The other involves HSP90 as a permissive signal transduction factor implicated in FAK phosphorylation and assembly of focal adhesions.

[1]  L. Neckers,et al.  The benzoquinone ansamycin geldanamycin stimulates proteolytic degradation of focal adhesion kinase. , 1999, Molecular genetics and metabolism.

[2]  H. Ueno,et al.  Platelet-derived Growth Factor Activates p38 Mitogen-activated Protein Kinase through a Ras-dependent Pathway That Is Important for Actin Reorganization and Cell Migration* , 1999, The Journal of Biological Chemistry.

[3]  K. Alitalo,et al.  Endothelial receptor tyrosine kinases involved in angiogenesis , 1995, The Journal of cell biology.

[4]  J. Landry,et al.  HSP27 phosphorylation-mediated resistance against actin fragmentation and cell death induced by oxidative stress. , 1996, Cancer research.

[5]  M. Waxham,et al.  Interactions of FLT-1 and KDR with phospholipase C gamma: identification of the phosphotyrosine binding sites. , 1997, Biochemical and biophysical research communications.

[6]  M. Shibuya,et al.  The phosphorylated 1169-tyrosine containing region of flt-1 kinase (VEGFR-1) is a major binding site for PLCgamma. , 1997, Biochemical and biophysical research communications.

[7]  V. Hombach,et al.  Functional upregulation of the vascular endothelial growth factor receptor KDR by hypoxia. , 1996, Circulation.

[8]  M. Carlier,et al.  Control of Actin Dynamics in Cell Motility , 2022 .

[9]  J. Landry,et al.  Regulation of actin filament dynamics by p38 map kinase-mediated phosphorylation of heat shock protein 27. , 1997, Journal of cell science.

[10]  G. Martiny-Baron,et al.  Vascular endothelial growth factor up-regulates its receptor fms-like tyrosine kinase 1 (FLT-1) and a soluble variant of FLT-1 in human vascular endothelial cells. , 1997, Cancer research.

[11]  Shay Soker,et al.  Neuropilin-1 Is Expressed by Endothelial and Tumor Cells as an Isoform-Specific Receptor for Vascular Endothelial Growth Factor , 1998, Cell.

[12]  Atsushi Namiki,et al.  Indirect Angiogenic Cytokines Upregulate VEGF and bFGF Gene Expression in Vascular Smooth Muscle Cells, Whereas Hypoxia Upregulates VEGF Expression Only , 1994 .

[13]  J. Johnson,et al.  Parvalbumin relaxes frog skeletal muscle when sarcoplasmic reticulum Ca(2+)-ATPase is inhibited. , 1996, The American journal of physiology.

[14]  D. Zechner,et al.  A Role for the p38 Mitogen-activated Protein Kinase Pathway in Myocardial Cell Growth, Sarcomeric Organization, and Cardiac-specific Gene Expression , 1997, The Journal of cell biology.

[15]  G. Breier,et al.  The Vascular Endothelial Growth Factor Receptor Flt-1 Mediates Biological Activities , 1996, The Journal of Biological Chemistry.

[16]  J. Martial,et al.  Activation of mitogen-activated protein kinases by vascular endothelial growth factor and basic fibroblast growth factor in capillary endothelial cells is inhibited by the antiangiogenic factor 16-kDa N-terminal fragment of prolactin. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[17]  D. Thiele,et al.  The Sch9 protein kinase regulates Hsp90 chaperone complex signal transduction activity in vivo , 1999, The EMBO journal.

[18]  M. Shibuya,et al.  A unique signal transduction from FLT tyrosine kinase, a receptor for vascular endothelial growth factor VEGF. , 1995, Oncogene.

[19]  L. Neckers,et al.  Inhibition of heat shock protein HSP90-pp60v-src heteroprotein complex formation by benzoquinone ansamycins: essential role for stress proteins in oncogenic transformation. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[20]  R. Jove,et al.  The hsp90-binding Antibiotic Geldanamycin Decreases Raf Levels and Epidermal Growth Factor Signaling without Disrupting Formation of Signaling Complexes or Reducing the Specific Enzymatic Activity of Raf Kinase* , 1997, The Journal of Biological Chemistry.

[21]  F. Marceau,et al.  Effects of experimental conditions on the production of interleukin-1α and -1β by human endothelial cells cultured in vitro , 1992 .

[22]  A. Guimond,et al.  Characterization of 45-kDa/54-kDa HSP27 kinase, a stress-sensitive kinase which may activate the phosphorylation-dependent protective function of mammalian 27-kDa heat-shock protein HSP27. , 1995, European journal of biochemistry.

[23]  J. Waltenberger,et al.  The Vascular Endothelial Growth Factor Receptor KDR Activates Multiple Signal Transduction Pathways in Porcine Aortic Endothelial Cells* , 1997, The Journal of Biological Chemistry.

[24]  C. Nobes,et al.  Rho, Rac, and Cdc42 GTPases regulate the assembly of multimolecular focal complexes associated with actin stress fibers, lamellipodia, and filopodia , 1995, Cell.

[25]  I. Zachary,et al.  Vascular Endothelial Growth Factor Stimulates Tyrosine Phosphorylation and Recruitment to New Focal Adhesions of Focal Adhesion Kinase and Paxillin in Endothelial Cells* , 1997, The Journal of Biological Chemistry.

[26]  Roger Fan,et al.  Dynamic activation of endothelial nitric oxide synthase by Hsp90 , 1998, Nature.

[27]  Zhong-ying Liu,et al.  Characterization of Signal Transduction Pathways in Human Bone Marrow Endothelial Cells , 1997 .

[28]  Ivar Giaever,et al.  Permissive Role of Nitric Oxide in Endothelin-induced Migration of Endothelial Cells* , 1997, The Journal of Biological Chemistry.

[29]  C. Turner,et al.  Tyrosine kinase activity, cytoskeletal organization, and motility in human vascular endothelial cells. , 1994, Molecular biology of the cell.

[30]  V. Hombach,et al.  Suramin is a potent inhibitor of vascular endothelial growth factor. A contribution to the molecular basis of its antiangiogenic action. , 1996, Journal of molecular and cellular cardiology.

[31]  L. Zhan,et al.  The role of p38 MAP kinase in TGF-beta1-induced signal transduction in human neutrophils. , 1998, Biochemical and biophysical research communications.

[32]  T. Sasaki,et al.  Involvement of Rho p21 small GTP-binding protein and its regulator in the HGF-induced cell motility. , 1994, Oncogene.

[33]  Jacques Landry,et al.  SAPK2/p38-dependent F-Actin Reorganization Regulates Early Membrane Blebbing during Stress-induced Apoptosis , 1998, The Journal of cell biology.

[34]  Timothy A. J. Haystead,et al.  The Amino-terminal Domain of Heat Shock Protein 90 (hsp90) That Binds Geldanamycin Is an ATP/ADP Switch Domain That Regulates hsp90 Conformation* , 1997, The Journal of Biological Chemistry.

[35]  S. Hanks,et al.  Identification of p130Cas as a Mediator of Focal Adhesion Kinase–promoted Cell Migration , 1998, The Journal of cell biology.

[36]  K. Burridge,et al.  Rho-stimulated contractility drives the formation of stress fibers and focal adhesions , 1996, The Journal of cell biology.

[37]  Philip R. Cohen,et al.  SB 203580 is a specific inhibitor of a MAP kinase homologue which is stimulated by cellular stresses and interleukin‐1 , 1995, FEBS letters.

[38]  J. Waltenberger,et al.  VEGF-A induces expression of eNOS and iNOS in endothelial cells via VEGF receptor-2 (KDR). , 1998, Biochemical and biophysical research communications.

[39]  D. Hicklin,et al.  Inhibition of vascular endothelial growth factor-induced receptor activation with anti-kinase insert domain-containing receptor single-chain antibodies from a phage display library. , 1998, Cancer research.

[40]  T. Noda,et al.  Flt-1 lacking the tyrosine kinase domain is sufficient for normal development and angiogenesis in mice. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[41]  J. Isner,et al.  Vascular endothelial growth factor/vascular permeability factor enhances vascular permeability via nitric oxide and prostacyclin. , 1998, Circulation.

[42]  J. Parsons,et al.  Inhibition of cell spreading by expression of the C-terminal domain of focal adhesion kinase (FAK) is rescued by coexpression of Src or catalytically inactive FAK: a role for paxillin tyrosine phosphorylation , 1997, Molecular and cellular biology.

[43]  H. Lander,et al.  Differential Activation of Mitogen-activated Protein Kinases by Nitric Oxide-related Species* , 1996, The Journal of Biological Chemistry.

[44]  R. Alexander,et al.  p38 Mitogen-activated Protein Kinase Is a Critical Component of the Redox-sensitive Signaling Pathways Activated by Angiotensin II , 1998, The Journal of Biological Chemistry.

[45]  Shay Soker,et al.  Characterization of Novel Vascular Endothelial Growth Factor (VEGF) Receptors on Tumor Cells That Bind VEGF via Its Exon 7-encoded Domain (*) , 1996, The Journal of Biological Chemistry.

[46]  J. Isner,et al.  Vascular endothelial growth factor/vascular permeability factor augments nitric oxide release from quiescent rabbit and human vascular endothelium. , 1997, Circulation.

[47]  J. Fiddes,et al.  The human gene for vascular endothelial growth factor. Multiple protein forms are encoded through alternative exon splicing. , 1991, The Journal of biological chemistry.

[48]  Ivar Giaever,et al.  Podokinesis in endothelial cell migration: role of nitric oxide. , 1998, American journal of physiology. Cell physiology.

[49]  J. Landry,et al.  Oxidative stress-induced actin reorganization mediated by the p38 mitogen-activated protein kinase/heat shock protein 27 pathway in vascular endothelial cells. , 1997, Circulation research.

[50]  W. Pratt The role of the hsp90-based chaperone system in signal transduction by nuclear receptors and receptors signaling via MAP kinase. , 1997, Annual review of pharmacology and toxicology.

[51]  John C. Lee,et al.  Identification of Mitogen-activated Protein (MAP) Kinase-activated Protein Kinase-3, a Novel Substrate of CSBP p38 MAP Kinase (*) , 1996, The Journal of Biological Chemistry.

[52]  M. Kitamura,et al.  Oxidant stress incites spreading of macrophages via extracellular signal-regulated kinases and p38 mitogen-activated protein kinase. , 1998, Journal of immunology.

[53]  A. Huttenlocher,et al.  Adhesion in cell migration. , 1995, Current opinion in cell biology.

[54]  H. Granger,et al.  Nitric Oxide Is an Upstream Signal of Vascular Endothelial Growth Factor-induced Extracellular Signal-regulated Kinase½ Activation in Postcapillary Endothelium* , 1998, The Journal of Biological Chemistry.

[55]  K. Burridge,et al.  Focal adhesions, contractility, and signaling. , 1996, Annual review of cell and developmental biology.

[56]  W. Pratt The hsp90-based Chaperone System: Involvement in Signal Transduction from a Variety of Hormone and Growth Factor Receptors , 1998, Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine.

[57]  S. Soker,et al.  Tumor Necrosis Factor-α Regulates Expression of Vascular Endothelial Growth Factor Receptor-2 and of Its Co-receptor Neuropilin-1 in Human Vascular Endothelial Cells* , 1998, The Journal of Biological Chemistry.

[58]  Janet Rossant,et al.  Failure of blood-island formation and vasculogenesis in Flk-1-deficient mice , 1995, Nature.

[59]  J. Behlke,et al.  Phosphorylation and supramolecular organization of murine small heat shock protein HSP25 abolish its actin polymerization-inhibiting activity. , 1994, The Journal of biological chemistry.

[60]  G. Breier,et al.  The role of vascular endothelial growth factor in blood vessel formation. , 1996, Trends in cell biology.

[61]  J. Landry,et al.  Modulation of cellular thermoresistance and actin filament stability accompanies phosphorylation-induced changes in the oligomeric structure of heat shock protein 27 , 1995, Molecular and cellular biology.

[62]  R. Heuertz,et al.  C-reactive Protein Inhibits Chemotactic Peptide-induced p38 Mitogen-activated Protein Kinase Activity and Human Neutrophil Movement* , 1999, The Journal of Biological Chemistry.

[63]  K. Thomas Vascular Endothelial Growth Factor, a Potent and Selective Angiogenic Agent (*) , 1996, The Journal of Biological Chemistry.

[64]  M. Waxham,et al.  Interaction of the Flt-1 Tyrosine Kinase Receptor with the p85 Subunit of Phosphatidylinositol 3-Kinase , 1995, The Journal of Biological Chemistry.

[65]  Yihai Cao,et al.  Placenta growth factor stimulates MAP kinase and mitogenicity but not phospholipase C-γ and migration of endothelial cells expressing Flt 1 , 1998, Oncogene.

[66]  Atsushi Namiki,et al.  Hypoxia Induces Vascular Endothelial Growth Factor in Cultured Human Endothelial Cells (*) , 1995, The Journal of Biological Chemistry.

[67]  P. Jaakkola,et al.  Wound reepithelialization activates a growth factor‐responsive enhancer in migrating keratinocytes , 1998, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[68]  Y. Yazaki,et al.  Vascular endothelial growth factor induces activation and subcellular translocation of focal adhesion kinase (p125FAK) in cultured rat cardiac myocytes. , 1999, Circulation research.

[69]  J. Rossant,et al.  Role of the Flt-1 receptor tyrosine kinase in regulating the assembly of vascular endothelium , 1995, Nature.

[70]  P. Boquet,et al.  ADP-ribosylation of a small size GTP-binding protein in bovine neutrophils by the C3 exoenzyme of Clostridium botulinum and effect on the cell motility. , 1991, Biochemical and Biophysical Research Communications - BBRC.

[71]  Jacques Landry,et al.  p38 MAP kinase activation by vascular endothelial growth factor mediates actin reorganization and cell migration in human endothelial cells , 1997, Oncogene.

[72]  F. Hartl,et al.  In Vivo Function of Hsp90 Is Dependent on ATP Binding and ATP Hydrolysis , 1998, The Journal of cell biology.

[73]  M. Shibuya,et al.  Different signal transduction properties of KDR and Flt1, two receptors for vascular endothelial growth factor. , 1994, The Journal of biological chemistry.

[74]  A. Bridges,et al.  A synthetic inhibitor of the mitogen-activated protein kinase cascade. , 1995, Proceedings of the National Academy of Sciences of the United States of America.