An efficient multivariate control charting mechanism based on SPRT

This article devises a feasible multivariate Sequential Probability Ratio Test chart (MSPRT chart) to monitor the mean of the multivariate normal distribution. To reduce the time required by the MSPRT chart to detect shifts of a wide range, the charting parameters are optimised to minimise the Average Extra Quadratic Loss (AEQL). The comparative study reveals that the MSPRT chart can improve the performance of the typical Hotelling’s T2 chart and the multivariate synthetic (Msynthetic) chart. It also shows that the MSPRT chart outperforms the multivariate Exponentially Weighted Moving Average (MEWMA) chart for moderate and large shifts but the latter prevails in detecting small shifts. For ease of use, we also provide two design tables for the quality engineers to adopt the MSPRT and Hotelling’s T2 charts more conveniently. Finally, we used an example concerning the white wine production process to demonstrate the application of the proposed scheme.

[1]  Zhonghua Li,et al.  A new adaptive CUSUM control chart for detecting the multivariate process mean , 2011, Qual. Reliab. Eng. Int..

[2]  Ross Sparks,et al.  CUSUM Charts for Signalling Varying Location Shifts , 2000 .

[3]  Fugee Tsung,et al.  A Variable-Selection-Based Multivariate EWMA Chart for Process Monitoring and Diagnosis , 2012 .

[4]  Di Wen,et al.  A comparison study on effectiveness and robustness of control charts for monitoring process mean and variance , 2012, Qual. Reliab. Eng. Int..

[5]  Zhang Wu,et al.  An SPRT control chart with variable sampling intervals , 2011 .

[6]  Herbert Moskowitz,et al.  Joint economic design of EWMA control charts for mean and variance , 2008, Eur. J. Oper. Res..

[7]  Yan Li,et al.  Adaptive charting schemes based on double sequential probability ratio tests , 2009, Qual. Reliab. Eng. Int..

[8]  Tongdan Jin,et al.  An improved self-starting cumulative count of conforming chart for monitoring high-quality processes under group inspection , 2012 .

[9]  Marion R. Reynolds,et al.  CUSUM Control Charts with Variable Sample Sizes and Sampling Intervals , 2001 .

[10]  Marion R. Reynolds,et al.  Corrected diffusion theory approximations in evaluating properties of SPRT charts for monitoring a process mean , 1997 .

[11]  Ka Man Lee,et al.  An optimal design algorithm of the SPRT chart for minimizing weighted ATS , 2012 .

[12]  William H. Woodall,et al.  Evaluating and Improving the Synthetic Control Chart , 2002 .

[13]  Philippe Castagliola,et al.  Optimal designs of the multivariate synthetic chart for monitoring the process mean vector based on median run length , 2011, Qual. Reliab. Eng. Int..

[14]  James R. Wilson,et al.  Monitoring nonlinear profiles using a wavelet-based distribution-free CUSUM chart , 2012 .

[15]  Thomas Rbement,et al.  Fundamentals of quality control and improvement , 1993 .

[16]  Thong Ngee Goh,et al.  A new SPRT chart for monitoring process mean and variance , 2011 .

[17]  Gyo-Young Cho,et al.  CUSUM charts with variable sampling intervals , 2009 .

[18]  Fugee Tsung,et al.  A comparison study of effectiveness and robustness of control charts for monitoring process mean , 2012 .

[19]  Steven E. Rigdon,et al.  A double-integral equation for the average run length of a multivariate exponentially weighted moving average control chart , 1995 .

[20]  S. Rigdon An integral equation for the in-control average run length of a multivariate exponentially weighted moving average control chart , 1995 .

[21]  Ali A. Houshmand,et al.  Average run length comparison of multivariate control charts , 2001 .

[22]  Stelios Psarakis,et al.  Multivariate statistical process control charts: an overview , 2007, Qual. Reliab. Eng. Int..

[23]  Viliam Makis,et al.  Multivariate Bayesian Control Chart , 2008, Oper. Res..

[24]  Douglas C. Montgomery,et al.  Editorial: research in industrial statistics—Part I , 2001 .

[25]  Fred Spiring,et al.  Introduction to Statistical Quality Control , 2007, Technometrics.

[26]  Francisco Aparisi,et al.  T2 Control Charts with Variable Dimension , 2012 .

[27]  Paulo Cortez,et al.  Modeling wine preferences by data mining from physicochemical properties , 2009, Decis. Support Syst..

[28]  George C. Runger,et al.  A Markov Chain Model for the Multivariate Exponentially Weighted Moving Averages Control Chart , 1996 .

[29]  Arthur B. Yeh,et al.  Monitoring the covariance matrix via penalized likelihood estimation , 2013 .

[30]  Charles W. Champ,et al.  A multivariate exponentially weighted moving average control chart , 1992 .

[31]  M. R. Reynolds,et al.  The SPRT chart for monitoring a proportion , 1998 .

[32]  Philippe Castagliola,et al.  A combined synthetic&X chart for monitoring the process mean , 2010 .

[33]  Wei Jiang,et al.  A LASSO-Based Diagnostic Framework for Multivariate Statistical Process Control , 2011, Technometrics.

[34]  Joseph J. Pignatiello,et al.  Estimating the time of step change with Poisson CUSUM and EWMA control charts , 2011 .

[35]  Zachary G. Stoumbos,et al.  Control charts applying a sequential test at fixed sampling intervals with optional sampling at fixed times , 1993 .

[36]  Marion R. Reynolds,et al.  The SPRT control chart for the process mean with samples starting at fixed times , 2001 .

[37]  Jun Lv,et al.  On-line classifying process mean shifts in multivariate control charts based on multiclass support vector machines , 2012 .

[38]  Arthur B. Yeh,et al.  Monitoring multivariate process variability with individual observations via penalised likelihood estimation , 2012 .

[39]  William H. Woodall,et al.  Control Charts Based on Attribute Data: Bibliography and Review , 1997 .

[40]  D. T. Shirke,et al.  A Multivariate Synthetic Control Chart for Monitoring Process Mean Vector , 2008 .

[41]  Reza Baradaran Kazemzadeh,et al.  Economic and economic statistical design of T 2 control chart with two adaptive sample sizes , 2010 .

[42]  George O. Wesolowsky,et al.  Optimal SPRT and CUSUM procedures with compressed-limit gauges , 1996 .

[43]  Marion R. Reynolds,et al.  Control charts applying a general sequential test at each sampling point , 1996 .

[44]  Philippe Castagliola,et al.  A run sum Hotelling's χ2 control chart , 2013, Comput. Ind. Eng..