Finite element computation and experimental validation of sloshing in rectangular tanks

Finite element computation and experimental validation of sloshing in rectangular tanks near the primary and secondary resonance modes are presented. In particular, 2D free-surface evolution is studied. The computational analysis is based on solving the Navier-Stokes equations of incompressible flows with a monolithic solver that includes a stabilized formulation and a Lagrangian tracking technique for updating the free surface. The time-dependent behavior of the numerical and experimental wave heights at different control points are compared, where the experimental data is collected using ultrasonic sensors and a shake table that controls the motion of the rectangular container.

[1]  Wing Kam Liu,et al.  Lagrangian-Eulerian finite element formulation for incompressible viscous flows☆ , 1981 .

[2]  Tayfun E. Tezduyar,et al.  Discontinuity-capturing finite element formulations for nonlinear convection-diffusion-reaction equations , 1986 .

[3]  Antonio Huerta,et al.  Viscous flow with large free surface motion , 1988 .

[4]  S. Mittal,et al.  A new strategy for finite element computations involving moving boundaries and interfaces—the deforming-spatial-domain/space-time procedure. II: Computation of free-surface flows, two-liquid flows, and flows with drifting cylinders , 1992 .

[5]  T. Tezduyar,et al.  A new strategy for finite element computations involving moving boundaries and interfaces—the deforming-spatial-domain/space-time procedure. I: The concept and the preliminary numerical tests , 1992 .

[6]  Marek Behr,et al.  Parallel finite-element computation of 3D flows , 1993, Computer.

[7]  Tayfun E. Tezduyar,et al.  Massively parallel finite element simulation Of compressible and incompressible flows , 1994 .

[8]  Eugenio Oñate,et al.  A finite element formulation for incompressible flow problems using a generalized streamline operator , 1997 .

[9]  Marek Behr,et al.  Enhanced-Discretization Interface-Capturing Technique (EDICT) for computation of unsteady flows with interfaces , 1998 .

[10]  Tayfun E. Tezduyar,et al.  EDICT for 3D computation of two-fluid interfaces , 2000 .

[11]  Tayfun E. Tezduyar,et al.  Stabilized-finite-element/interface-capturing technique for parallel computation of unsteady flows with interfaces , 2000 .

[12]  Odd M. Faltinsen,et al.  Multidimensional modal analysis of nonlinear sloshing in a rectangular tank with finite water depth , 2000, Journal of Fluid Mechanics.

[13]  Tayfun E. Tezduyar,et al.  A moving Lagrangian interface technique for flow computations over fixed meshes , 2001 .

[14]  Mario Alberto Storti,et al.  Lagrangian formulations to solve free surface incompressible inviscid fluid flows , 2001 .

[15]  Tayfun E. Tezduyar,et al.  Finite element methods for flow problems with moving boundaries and interfaces , 2001 .

[16]  T. Tezduyar Computation of moving boundaries and interfaces and stabilization parameters , 2003 .

[17]  Odd M. Faltinsen,et al.  Resonant three-dimensional nonlinear sloshing in a square-base basin , 2003, Journal of Fluid Mechanics.

[18]  Tayfun E. Tezduyar,et al.  Moving‐interface computations with the edge‐tracked interface locator technique (ETILT) , 2005 .

[19]  R. Codina,et al.  Improving Eulerian two‐phase flow finite element approximation with discontinuous gradient pressure shape functions , 2005 .

[20]  Odd M. Faltinsen,et al.  Resonant three-dimensional nonlinear sloshing in a square-base basin. Part 2. Effect of higher modes , 2005, Journal of Fluid Mechanics.

[21]  Eugenio Oñate,et al.  Fluid-structure interaction using the particle finite element method , 2006 .

[22]  H. Akyıldız,et al.  Sloshing in a three-dimensional rectangular tank: Numerical simulation and experimental validation , 2006 .

[23]  Tayfun E. Tezduyar,et al.  Interface-tracking and interface-capturing techniques for finite element computation of moving boundaries and interfaces , 2006 .

[24]  T. Tezduyar,et al.  Improved Discontinuity-capturing Finite Element Techniques for Reaction Effects in Turbulence Computation , 2006 .

[25]  Piotr Breitkopf,et al.  A front remeshing technique for a Lagrangian description of moving interfaces in two‐fluid flows , 2006 .

[26]  Alessandro Corsini,et al.  Finite element computation of turbulent flows with the discontinuity-capturing directional dissipation (DCDD) , 2007 .

[27]  Tayfun E. Tezduyar,et al.  Computation of fluid–solid and fluid–fluid interfaces with the CIP method based on adaptive Soroban grids—An overview , 2007 .

[28]  Tayfun E. Tezduyar,et al.  A Numerical model based on the mixed interface‐tracking/interface‐capturing technique (MITICT) for flows with fluid–solid and fluid–fluid interfaces , 2007 .

[29]  Tayfun E. Tezduyar,et al.  Collapse of a Liquid Column: Numerical Simulation and Experimental Validation , 2007 .

[30]  Katsuji Tanizawa,et al.  Ship hydrodynamics computations with the CIP method based on adaptive Soroban grids , 2007 .

[31]  Rainald Löhner,et al.  Simulation of flows with violent free surface motion and moving objects using unstructured grids , 2007 .

[32]  Tayfun E. Tezduyar,et al.  Computation of flow problems with the Mixed Interface-Tracking/Interface-Capturing Technique (MITICT) , 2007 .

[33]  Tayfun E. Tezduyar,et al.  Computation of free-surface flows and fluid–object interactions with the CIP method based on adaptive meshless soroban grids , 2007 .

[34]  Pengzhi Lin,et al.  A numerical study of three-dimensional liquid sloshing in tanks , 2008, J. Comput. Phys..

[35]  Diego J. Celentano,et al.  Simulation and experimental validation of the motion of immersed rigid bodies in viscous flows , 2008 .

[36]  Luis A. Godoy,et al.  Linear and nonlinear 2D finite element analysis of sloshing modes and pressures in rectangular tanks subject to horizontal harmonic motions , 2008 .

[37]  P. Villon,et al.  A surface remeshing technique for a Lagrangian description of 3D two‐fluid flow problems , 2009 .

[38]  T. Tezduyar,et al.  Computational Modeling of the Collapse of a Liquid Column Over an Obstacle and Experimental Validation , 2009 .

[39]  Mario Alberto Storti,et al.  Simulation of free-surface flows by a finite element interface capturing technique , 2010 .

[40]  Odd M. Faltinsen,et al.  A multimodal method for liquid sloshing in a two-dimensional circular tank , 2010, Journal of Fluid Mechanics.

[41]  Mario Alberto Storti,et al.  Bounded renormalization with continuous penalization for level set interface‐capturing methods , 2010 .

[42]  G. Buscaglia,et al.  A geometric mass-preserving redistancing scheme for the level set function , 2009 .

[43]  Alessandro Corsini,et al.  Computational analysis of noise reduction devices in axial fans with stabilized finite element formulations , 2012 .

[44]  R. Löhner,et al.  Experimental and numerical analysis of a sphere falling into a viscous fluid , 2012 .

[45]  Mario Alberto Storti,et al.  Simulación numérica de la agitación en tanques de almacenamiento de líquidos mediante una estrategia lagrangiana euleriana arbitraria , 2012 .

[46]  S. Idelsohn,et al.  A new enrichment space for the treatment of discontinuous pressures in multi‐fluid flows , 2012 .