Large-scale fabrication of single-phase Er2SiO5 nanocrystal aggregates using Si nanowires

Single-phase Er2SiO5 nanocrystal aggregates were produced on a large scale using Si nanowire (Si-NW) arrays as templates. A dense array of Si-NWs was grown by vapor-liquid-solid mechanism using Au catalyst on Si (111) substrate. Afterwards, ErCl3∙6H2O dissolved ethanol solution was spin coated and annealed first at 900°C for 4min in a flowing N2∕O2 environment and then at 1200°C in a flowing Ar environment for 3min. X-ray diffraction, scanning electron microscope, and high-resolution transmission electron microscope measurements indicate that due to the use of Si-NWs, such a short annealing procedure is sufficient to completely transform the Er-coated Si-NWs into a thick, large-area aggregate of pure, single-phase to Er2SiO5 oxyorthosilicate nanocrystals. The crystalline nature of Er2SiO5 film and the loose nature of the aggregate result in an atomlike Er3+ spectrum with a very narrow luminescence linewidth at 1.53μm, which together with a complete lack of temperature quenching of Er3+ luminescence and a ...

[1]  Junjie Yu,et al.  Enhancement of 1.53 mu m photoluminescence from spin-coated Er-Si-O (Er2SiO5) crystalline films by nitrogen plasma treatment , 2006 .

[2]  Jun Xu,et al.  Diode-pumped continuous-wave and passively mode-locked Yb:GSO laser. , 2006, Optics express.

[3]  M. Lipson,et al.  Electrically driven silicon resonant light emitting device based on slot-waveguide. , 2005, Optics express.

[4]  Anthony J. Kenyon,et al.  Erbium in silicon , 2005 .

[5]  Qianfan Xu,et al.  Micrometre-scale silicon electro-optic modulator , 2005, Nature.

[6]  M. Paniccia,et al.  A continuous-wave Raman silicon laser , 2005, Nature.

[7]  Heon-Jin Choi,et al.  Optical activation of Si nanowires using Er-doped, sol-gel derived silica , 2005 .

[8]  M. D. Dood,et al.  Self-assembled infrared-luminescent Er–Si–O crystallites on silicon , 2004 .

[9]  Kevin M. Chen,et al.  Er2O3 for high-gain waveguide amplifiers , 2004 .

[10]  Lorenzo Pavesi,et al.  Towards the First Silicon Laser , 2003 .

[11]  M. Green,et al.  Efficient silicon light-emitting diodes , 2001, Nature.

[12]  Philippe M. Fauchet,et al.  Erbium emission from porous silicon one-dimensional photonic band gap structures , 2000 .

[13]  Luca Dal Negro,et al.  Optical gain in silicon nanocrystals , 2000, Nature.

[14]  L. H. Slooff,et al.  Erbium-implanted silica colloids with 80% luminescence quantum efficiency , 2000 .

[15]  M. T. Mora-Aznar Condensed-Matter and Materials Physics: Basic Research for Tomorrow's Technology , 2000 .

[16]  N. Olsson,et al.  Erbium-Doped Fiber Amplifiers: Fundamentals and Technology , 1999 .

[17]  N. A. Olsson,et al.  Erbium-Doped Fiber Amplifiers—Amplifier Basics , 1999 .

[18]  H. Oechsner,et al.  Erbium luminescence in porous silicon doped from spin‐on films , 1995 .

[19]  G. N. van den Hoven,et al.  Optical doping of soda‐lime‐silicate glass with erbium by ion implantation , 1993 .

[20]  Mk Meint Smit,et al.  Photoluminescence characterization of Er-implanted Al2O3 films , 1993 .

[21]  S. Singhal,et al.  Phase Relations and Stability Studies in the Si3N4‐SiO2‐Y2O3 Pseudoternary System , 1977 .

[22]  J. Felsche The crystal chemistry of the rare-earth silicates , 1973 .

[23]  R. S. Wagner,et al.  VAPOR‐LIQUID‐SOLID MECHANISM OF SINGLE CRYSTAL GROWTH , 1964 .

[24]  N. Toropov,et al.  Silicates of the rare earth elements communication 5. phase diagrams of the Dy2O3-SiO2 and Er2O3-SiO2 systems , 1961 .