Intensifying Kaibel dividing-wall column via vapor recompression heat pump

Abstract The four-product Kaibel dividing-wall column (KDWC) can save about 40% energy compared with the conventional distillation sequences. Nevertheless, the energy efficiency of KDWC are likely to be increased further by employing vapor recompression heat pump (VRHP) technology. The focus of this paper is to explore effective configurations to intensify the four-product KDWC via vapor recompression heat pump. Separation of two kinds of mixtures including n-pentane, n-hexane, n-heptane and n-octane and benzene, toluene, o-xylene and tri-methyl-benzene are chosen as illustrative cases. The standard vapor recompression heat pump assisted KDWC configuration (KDWC–SVRHP) and the vapor recompression heat pump assisted KDWC configuration with an intermediate reboiler (KDWC–VRHP-IR) are proposed in this paper and compared with the conventional distillation sequences and the original KDWC configuration. The feasibility and effectiveness of intensifying KDWC via vapor recompression heat pump technology is verified and the energy saving ability is explained by the exergy loss analysis. Results prove that KDWC–VRHP-IR is able to substantially reduce the operating cost of KDWC.

[1]  James M. Douglas,et al.  Conceptual Design of Chemical Processes , 1988 .

[2]  Sigurd Skogestad,et al.  Hydraulic design, technical challenges and comparison of alternative configurations of a four-product dividing wall column , 2014 .

[3]  Amiya K. Jana,et al.  Heat pump assisted reactive distillation: Wide boiling mixture , 2011 .

[4]  R. Rivero,et al.  Exergy Analysis of Adiabatic and Diabatic Distillation Columns : An Experimental Study , 1993 .

[5]  Ljubica Matijašević,et al.  Dividing wall column—A breakthrough towards sustainable distilling , 2010 .

[6]  Sigurd Skogestad,et al.  Minimum Energy Consumption in Multicomponent Distillation. 3. More Than Three Products and Generalized Petlyuk Arrangements , 2003 .

[7]  Anton A. Kiss,et al.  Intensified process for aromatics separation powered by Kaibel and dividing-wall columns , 2013 .

[8]  W. Luyben Distillation Design and Control Using Aspen Simulation , 2006 .

[9]  Li Shi,et al.  Application of Vapor Recompression to Heterogeneous Azeotropic Dividing-Wall Distillation Columns , 2015 .

[10]  Xing Qian,et al.  Comparison of stabilizing control structures for four-product Kaibel column , 2016 .

[11]  Sigurd Skogestad,et al.  Optimal operation of Kaibel distillation columns , 2011 .

[12]  Sigurd Skogestad,et al.  Control structure selection for four-product Kaibel column , 2016, Comput. Chem. Eng..

[13]  Ling Hao,et al.  Steady-state behavior and control of Kaibel divided-wall column for aromatics separation , 2015 .

[14]  D. Dwivedi,et al.  Active Vapor Split Control for Dividing-Wall Columns , 2012 .

[15]  Juan B. Montón,et al.  Separation of isobutyl alcohol and isobutyl acetate by extractive distillation and pressure-swing distillation: Simulation and optimization , 2006 .

[16]  Xigang Yuan,et al.  Optimal design for dividing wall column using support vector machine and particle swarm optimization , 2017 .

[17]  Igor Dejanović,et al.  Designing four-product dividing wall columns for separation of a multicomponent aromatics mixture , 2011 .

[18]  S. B. Adejuyigbe,et al.  Performance enhancement of vapor recompression heat pump , 2014 .

[19]  Amiya K. Jana,et al.  A novel multistage vapor recompression reactive distillation system with intermediate reboilers , 2013 .

[20]  C. Triantafyllou,et al.  The design and optimisation of fully thermally coupled distillation columns : Process design , 1992 .

[21]  Anton A. Kiss,et al.  Distillation technology - still young and full of breakthrough opportunities , 2014 .

[22]  Richard Turton,et al.  Analysis, Synthesis and Design of Chemical Processes , 2002 .

[23]  Xigang Yuan,et al.  Numerical simulation of dividing wall column with vapor recompression located at side product stage , 2017 .

[24]  Xigang Yuan,et al.  New Intensified Heat Integration of Vapor Recompression Assisted Dividing Wall Column , 2017 .

[25]  Ž. Olujić,et al.  Conceptual design of an internally heat integrated propylene-propane splitter , 2006 .

[26]  Chunjian Xu,et al.  Design and Control of Extractive Dividing-Wall Column for Separating Methylal–Methanol Mixture , 2012 .

[27]  T. J. Kotas,et al.  The Exergy Method of Thermal Plant Analysis , 2012 .

[28]  D. Wong,et al.  Intensifying reactive dividing-wall distillation processes via vapor recompression heat pump , 2017 .

[29]  Sigurd Skogestad,et al.  Steady State and Dynamic Operation of Four-Product Dividing-Wall (Kaibel) Columns: Experimental Verification , 2012 .