Micellar Catalysis for Ruthenium(II)-Catalyzed C-H Arylation: Weak-Coordination-Enabled C-H Activation in H2 O.

Chemoselective C-H arylations were accomplished through micellar catalysis by a versatile single-component ruthenium catalyst. The strategy provided expedient access to C-H-arylated ferrocenes with wide functional-group tolerance and ample scope through weak chelation assistance. The sustainability of the C-H arylation was demonstrated by outstanding atom-economy and recycling studies. Detailed computational studies provided support for a facile C-H activation through thioketone assistance.

[1]  K. Ruiz-Mirazo,et al.  Soft and dispersed interface-rich aqueous systems that promote and guide chemical reactions , 2018, Nature Reviews Chemistry.

[2]  F. Gallou,et al.  π‐Allylpalladium Species in Micelles of FI‐750‐M for Sustainable and General Suzuki‐Miyaura Couplings of Unactivated Quinoline Systems in Water , 2018, ChemCatChem.

[3]  Michael R. Maser,et al.  Synthesis of Functionalized 1,3-Butadienes via Pd-Catalyzed Cross-Couplings of Substituted Allenic Esters in Water at Room Temperature. , 2018, Organic letters.

[4]  F. Gallou,et al.  EvanPhos: a ligand for ppm level Pd-catalyzed Suzuki–Miyaura couplings in either organic solvent or water , 2018 .

[5]  H. Butenschön,et al.  Cp*Co(CO)I2 as Catalyst for Ortho-C,H Activation at Ferrocene: ODG-Dependent Preference for 2-Mono- or 2,5-Dialkenylation , 2018, Organometallics.

[6]  L. Ackermann,et al.  Thiocarbonyl-enabled ferrocene C–H nitrogenation by cobalt(III) catalysis: thermal and mechanochemical , 2018, Beilstein journal of organic chemistry.

[7]  I. Vitorica-Yrezabal,et al.  Cyclometallated ruthenium catalyst enables late-stage directed arylation of pharmaceuticals , 2018, Nature Chemistry.

[8]  F. Gallou,et al.  B-Alkyl sp3-sp2 Suzuki-Miyaura Couplings under Mild Aqueous Micellar Conditions. , 2018, Organic letters.

[9]  B. Lipshutz,et al.  The Hydrophobic Effect Applied to Organic Synthesis: Recent Synthetic Chemistry "in Water". , 2018, Chemistry.

[10]  M. Andersson,et al.  Structure of Nanoparticles Derived from Designer Surfactant TPGS-750-M in Water, As Used in Organic Synthesis. , 2018, Chemistry.

[11]  S. You,et al.  Cp*Co(III)-catalyzed ortho C-H amidation of 2-pyridinyl ferrocenes with 1,4,2-dioxazol-5-ones , 2018 .

[12]  M. Andersson,et al.  Micelle-enabled clean and selective sulfonylation of polyfluoroarenes in water under mild conditions , 2018 .

[13]  L. Ackermann,et al.  Arene-Ligand-Free Ruthenium(II/III) Manifold for meta-C-H Alkylation: Remote Purine Diversification. , 2018, Chemistry.

[14]  F. Gallou,et al.  Micelle-Enabled Photoassisted Selective Oxyhalogenation of Alkynes in Water under Mild Conditions. , 2018, The Journal of organic chemistry.

[15]  S. You,et al.  Thioketone-Directed Palladium(II)-Catalyzed C-H Arylation of Ferrocenes with Aryl Boronic Acids. , 2018, Angewandte Chemie.

[16]  Justin D. Smith,et al.  Sustainable HandaPhos-ppm Palladium Technology for Copper-Free Sonogashira Couplings in Water under Mild Conditions. , 2018, Organic letters.

[17]  H. Butenschön,et al.  Directed Iron-Catalyzed ortho-Alkylation and Arylation: Toward the Stereoselective Catalytic Synthesis of 1,2-Disubstituted Planar-Chiral Ferrocene Derivatives , 2017 .

[18]  Justin D. Smith,et al.  Micelle-Enabled Palladium Catalysis for Convenient sp2-sp3 Coupling of Nitroalkanes with Aryl Bromides in Water Under Mild Conditions , 2017 .

[19]  R. Manikandan,et al.  Recent advances in the ruthenium(ii)-catalyzed chelation-assisted C-H olefination of substituted aromatics, alkenes and heteroaromatics with alkenes via the deprotonation pathway. , 2017, Chemical communications.

[20]  F. Jordan,et al.  Recent Developments in Ruthenium-Catalyzed C–H Arylation: Array of Mechanistic Manifolds , 2017 .

[21]  A. Saeed,et al.  Recent advances in the synthesis, biological activities and various applications of ferrocene derivatives , 2017 .

[22]  jin-quan yu,et al.  Palladium-Catalyzed Transformations of Alkyl C-H Bonds. , 2017, Chemical reviews.

[23]  L. Ackermann,et al.  Recent advances in positional-selective alkenylations: removable guidance for twofold C–H activation , 2017 .

[24]  S. You,et al.  Rhodium(III)-Catalyzed C-H Alkynylation of Ferrocenes with Hypervalent Iodine Reagents. , 2017, The Journal of organic chemistry.

[25]  L. Ackermann,et al.  Ruthenium(II)-Catalyzed C-C Arylations and Alkylations: Decarbamoylative C-C Functionalizations. , 2017, Angewandte Chemie.

[26]  M. Zhang,et al.  Metal-Catalyzed Decarboxylative C-H Functionalization. , 2017, Chemical reviews.

[27]  M. Parmentier,et al.  Sustainable and Scalable Fe/ppm Pd Nanoparticle Nitro Group Reductions in Water at Room Temperature , 2017 .

[28]  S. You,et al.  Synthesis of Planar Chiral Ferrocenes via Transition-Metal-Catalyzed Direct C-H Bond Functionalization. , 2017, Accounts of chemical research.

[29]  Sukbok Chang,et al.  Transition Metal-Catalyzed C-H Amination: Scope, Mechanism, and Applications. , 2017, Chemical reviews.

[30]  Justin D. Smith,et al.  Synergistic and Selective Copper/ppm Pd-Catalyzed Suzuki–Miyaura Couplings: In Water, Mild Conditions, with Recycling , 2016 .

[31]  Mario Leclerc,et al.  Direct (Hetero)arylation Polymerization: Simplicity for Conjugated Polymer Synthesis. , 2016, Chemical reviews.

[32]  L. Ackermann,et al.  Ruthenium(ii)-catalyzed C-H functionalizations on benzoic acids with aryl, alkenyl and alkynyl halides by weak-O-coordination. , 2016, Chemical communications.

[33]  F. Gallou,et al.  Evolution of Solvents in Organic Chemistry , 2016 .

[34]  Qing‐Zhong Zheng,et al.  Ag-catalyzed C-H/C-C bond functionalization. , 2016, Chemical Society reviews.

[35]  K. Tan,et al.  Sequential Regioselective C-H Functionalization of Thiophenes. , 2016, Organic letters.

[36]  M. Parmentier,et al.  A General and Practical Alternative to Polar Aprotic Solvents Exemplified on an Amide Bond Formation , 2016 .

[37]  Shenlin Huang,et al.  Cationic Pd(II)-catalyzed C–H activation/cross-coupling reactions at room temperature: synthetic and mechanistic studies , 2016, Beilstein journal of organic chemistry.

[38]  M. Seki A New Catalytic System for Ru-Catalyzed C–H Arylation Reactions and Its Application in the Practical Syntheses of Pharmaceutical Agents , 2016 .

[39]  M. Andersson,et al.  HandaPhos: A General Ligand Enabling Sustainable ppm Levels of Palladium-Catalyzed Cross-Couplings in Water at Room Temperature. , 2016, Angewandte Chemie.

[40]  S. You,et al.  An Enantioselective Oxidative C-H/C-H Cross-Coupling Reaction: Highly Efficient Method To Prepare Planar Chiral Ferrocenes. , 2016, Journal of the American Chemical Society.

[41]  L. Ackermann,et al.  Expedient Iron-Catalyzed C-H Allylation/Alkylation by Triazole Assistance with Ample Scope. , 2016, Angewandte Chemie.

[42]  Fabrice Gallou,et al.  Surfactant technology applied toward an active pharmaceutical ingredient: more than a simple green chemistry advance , 2016 .

[43]  Ping-Fan Chen,et al.  Synthesis of Planar Chiral Ferrocenes by Transition‐Metal‐Catalyzed Enantioselective C−H Activation , 2016 .

[44]  B. Lipshutz,et al.  Nanonickel-catalyzed Suzuki-Miyaura cross-couplings in water. , 2015, Angewandte Chemie.

[45]  Ye Wang,et al.  Sustainable Fe–ppm Pd nanoparticle catalysis of Suzuki-Miyaura cross-couplings in water , 2015, Science.

[46]  L. Ackermann,et al.  Ruthenium(II)-Catalyzed C–H Arylation of Azoarenes by Carboxylate Assistance , 2015 .

[47]  L. López,et al.  Recent advances in transition metal-catalyzed C-H bond functionalization of ferrocene derivatives. , 2015, Dalton transactions.

[48]  L. Ackermann,et al.  C‐H‐Alkenylierungen mit Alkenylacetaten, ‐phosphaten, ‐carbonaten und ‐carbamaten durch Cobalt‐Katalyse bei 23 °C , 2015 .

[49]  L. Ackermann,et al.  C-H alkenylations with alkenyl acetates, phosphates, carbonates, and carbamates by cobalt catalysis at 23 °C. , 2015, Angewandte Chemie.

[50]  Xichen Lin,et al.  Efficient and C2-selective arylation of indoles, benzofurans, and benzothiophenes with iodobenzenes in water at room temperature , 2015 .

[51]  N. Cramer,et al.  Chiral Cyclopentadienyls: Enabling Ligands for Asymmetric Rh(III)-Catalyzed C-H Functionalizations. , 2015, Accounts of chemical research.

[52]  G. Strukul,et al.  Recent advances in catalysis in micellar media , 2015 .

[53]  L. Ackermann Robust Ruthenium(II)-Catalyzed C–H Arylations: Carboxylate Assistance for the Efficient Synthesis of Angiotensin-II-Receptor Blockers , 2015 .

[54]  T. Shibata,et al.  Iridium-catalyzed enantioselective C-H alkylation of ferrocenes with alkenes using chiral diene ligands. , 2014, Angewandte Chemie.

[55]  L. Ackermann,et al.  Ferrocenylalkynes for Ruthenium-Catalyzed Isohypsic CH/NO Bond Functionalizations , 2014 .

[56]  L. Ackermann,et al.  Weakly Coordinating Directing Groups for Ruthenium(II)‐ Catalyzed CH Activation , 2014 .

[57]  Haibin Song,et al.  Palladium-Catalyzed Direct Dehydrogenative Annulation of Ferrocenecarboxamides with Alkynes in Air , 2014 .

[58]  Sachin Handa,et al.  Aerobic oxidation in nanomicelles of aryl alkynes, in water at room temperature. , 2014, Angewandte Chemie.

[59]  S. You,et al.  Enantioselective synthesis of planar chiral ferrocenes via Pd(0)-catalyzed intramolecular direct C-H bond arylation. , 2014, Journal of the American Chemical Society.

[60]  Z. Gu,et al.  Palladium-catalyzed intramolecular asymmetric C-H functionalization/cyclization reaction of metallocenes: an efficient approach toward the synthesis of planar chiral metallocene compounds. , 2014, Journal of the American Chemical Society.

[61]  L. Ackermann Carboxylate-assisted ruthenium-catalyzed alkyne annulations by C-H/Het-H bond functionalizations. , 2014, Accounts of chemical research.

[62]  B. Lipshutz,et al.  "Nok": a phytosterol-based amphiphile enabling transition-metal-catalyzed couplings in water at room temperature. , 2014, The Journal of organic chemistry.

[63]  L. Ackermann,et al.  C-H nitrogenation and oxygenation by ruthenium catalysis. , 2014, Chemical communications.

[64]  F. Gallou,et al.  Transforming Suzuki-Miyaura cross-couplings of MIDA boronates into a green technology: no organic solvents. , 2013, Journal of the American Chemical Society.

[65]  B. Li,et al.  sp2 C-H bond activation in water and catalytic cross-coupling reactions. , 2013, Chemical Society reviews.

[66]  Frank Glorius,et al.  C-H bond activation enables the rapid construction and late-stage diversification of functional molecules. , 2013, Nature chemistry.

[67]  A. Stirling,et al.  Mild Palladium‐Catalyzed Oxidative Direct ortho‐C ? H Acylation of Anilides under Aqueous Conditions , 2013 .

[68]  P. Dixneuf,et al.  Ruthenium(II)-Catalyzed Alkenylation of Ferrocenyl Ketones via C–H Bond Activation , 2012 .

[69]  C. Bruneau,et al.  Ruthenium(II)-catalyzed C-H bond activation and functionalization. , 2012, Chemical reviews.

[70]  Melanie S. Sanford,et al.  High-valent organometallic copper and palladium in catalysis , 2012, Nature.

[71]  J. Pospech,et al.  Well-defined ruthenium(II) carboxylate as catalyst for direct C-H/C-O bond arylations with phenols in water. , 2012, Organic letters.

[72]  L. Ackermann,et al.  Ruthenium-catalyzed direct C-H bond arylations of heteroarenes. , 2011, Organic letters.

[73]  B. Lipshutz,et al.  TPGS-750-M: a second-generation amphiphile for metal-catalyzed cross-couplings in water at room temperature. , 2011, The Journal of organic chemistry.

[74]  L. Ackermann,et al.  Mechanistic insight into direct arylations with ruthenium(II) carboxylate catalysts. , 2010, Organic letters.

[75]  T. Satoh,et al.  Oxidative coupling of aromatic substrates with alkynes and alkenes under rhodium catalysis. , 2010, Chemistry.

[76]  A. Coyne,et al.  Water: nature's reaction enforcer--comparative effects for organic synthesis "in-water" and "on-water". , 2010, Chemical reviews.

[77]  C. Bruneau,et al.  C-H bond functionalization in water catalyzed by carboxylato ruthenium(II) systems. , 2010, Angewandte Chemie.

[78]  G. Strukul,et al.  Efficient nitrile hydration mediated by RuII catalysts in micellar media , 2010 .

[79]  Shenlin Huang,et al.  Cationic palladium(II) catalysis: C-H activation/Suzuki-Miyaura couplings at room temperature. , 2010, Journal of the American Chemical Society.

[80]  B. Lipshutz,et al.  Cationic Pd(II)-catalyzed Fujiwara-Moritani reactions at room temperature in water. , 2010, Organic letters.

[81]  B. Lipshutz,et al.  Room temperature C-H activation and cross-coupling of aryl ureas in water. , 2010, Angewandte Chemie.

[82]  L. Ackermann,et al.  Ruthenium-catalyzed direct arylations through C-H bond cleavages. , 2010, Topics in current chemistry.

[83]  L. Ackermann,et al.  Übergangsmetallkatalysierte direkte Arylierungen von (Hetero)Arenen durch C‐H‐Bindungsbruch , 2009 .

[84]  A. Kapdi,et al.  Transition-metal-catalyzed direct arylation of (hetero)arenes by C-H bond cleavage. , 2009, Angewandte Chemie.

[85]  L. Ackermann,et al.  [RuCl3(H2O)n] -catalyzed direct arylations , 2008 .

[86]  L. Ackermann,et al.  [RuCl3(H2O)n]-Catalyzed Direct Arylations with Bromides as Electrophiles , 2007 .

[87]  L. Ackermann,et al.  Ruthenium(IV)‐Alkylidene als Katalysatorvorstufen für direkte Arylierungen von Alkenen mit Chlorarenen und eine Anwendung auf die sequenzielle Katalyse , 2007 .

[88]  L. Ackermann,et al.  Ruthenium(IV) alkylidenes as precatalysts for direct arylations of alkenes with aryl chlorides and an application to sequential catalysis. , 2007, Angewandte Chemie.

[89]  Ramón Gómez Arrayás,et al.  Chirale Ferrocenliganden in der asymmetrischen Katalyse , 2006 .

[90]  Javier Adrio,et al.  Recent applications of chiral ferrocene ligands in asymmetric catalysis. , 2006, Angewandte Chemie.

[91]  L. Ackermann,et al.  Katalytische Arylierungen über C‐H‐Bindungsaktivierung mit Aryltosylaten , 2006 .

[92]  L. Ackermann,et al.  Catalytic arylation reactions by C-H bond activation with aryl tosylates. , 2006, Angewandte Chemie.

[93]  L. Ackermann Phosphine oxides as preligands in ruthenium-catalyzed arylations via C-H bond functionalization using aryl chlorides. , 2005, Organic letters.

[94]  G. C. Fu Asymmetric catalysis with "planar-chiral" derivatives of 4-(dimethylamino)pyridine. , 2004, Accounts of chemical research.

[95]  T. Tu,et al.  Asymmetric catalysis with chiral ferrocene ligands. , 2003, Accounts of chemical research.

[96]  G. C. Fu Enantioselective nucleophilic catalysis with "Planar-Chiral" heterocycles. , 2000, Accounts of chemical research.

[97]  H. Kunieda,et al.  Mixing of nonionic surfactants at water-oil interfaces in microemulsions , 1993 .