Advances in Importance Sampling

Importance sampling (IS) is a Monte Carlo technique for the approximation of intractable distributions and integrals with respect to them. The origin of IS dates from the early 1950s. In the last decades, the rise of the Bayesian paradigm and the increase of the available computational resources have propelled the interest in this theoretically sound methodology. In this paper, we first describe the basic IS algorithm and then revisit the recent advances in this methodology. We pay particular attention to two sophisticated lines. First, we focus on multiple IS (MIS), the case where more than one proposal is available. Second, we describe adaptive IS (AIS), the generic methodology for adapting one or more proposals.

[1]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[2]  H. Kahn,et al.  Random sampling (Monte Carlo) techniques in neutron attenuation problems--I. , 1950, Nucleonics.

[3]  H. Kahn,et al.  Methods of Reducing Sample Size in Monte Carlo Computations , 1953, Oper. Res..

[4]  H. Daniels Saddlepoint Approximations in Statistics , 1954 .

[5]  G. Marsaglia Expressing a Random Variable in Terms of Uniform Random Variables , 1961 .

[6]  J. Miller Numerical Analysis , 1966, Nature.

[7]  F. H. Clark THE EXPONENTIAL TRANSFORM AS AN IMPORTANCE-SAMPLING DEVICE. A REVIEW , 1966 .

[8]  F. Hampel Contributions to the theory of robust estimation , 1968 .

[9]  Forman S. Acton,et al.  Numerical methods that work , 1970 .

[10]  Richard W. Hamming,et al.  Introduction to Applied Numerical Analysis. , 1971 .

[11]  G. C. Tiao,et al.  Bayesian inference in statistical analysis , 1973 .

[12]  F. Hampel The Influence Curve and Its Role in Robust Estimation , 1974 .

[13]  C. J. Lawrence Robust estimates of location : survey and advances , 1975 .

[14]  F. David,et al.  Statistical Techniques in Simulation: Part I , 1975 .

[15]  C. Mallows,et al.  A Method for Simulating Stable Random Variables , 1976 .

[16]  D. Siegmund Importance Sampling in the Monte Carlo Study of Sequential Tests , 1976 .

[17]  T. Kloek,et al.  Bayesian estimates of equation system parameters, An application of integration by Monte Carlo , 1976 .

[18]  N. J. Johnson,et al.  Modified t Tests and Confidence Intervals for Asymmetrical Populations , 1978 .

[19]  J.P.C. Kleijnen,et al.  Importance sampling in systems simulation : A practical failure? , 1979 .

[20]  J. Ghosh,et al.  ON THE VALIDITY OF THE FORMAL EDGEWORTH EXPANSION , 1978 .

[21]  Leland Stewart,et al.  Multiparameter Univariate Bayesian Analysis , 1979 .

[22]  B. Efron,et al.  The Jackknife: The Bootstrap and Other Resampling Plans. , 1983 .

[23]  Paul Bratley,et al.  A guide to simulation , 1983 .

[24]  Douglas R. Miller,et al.  An importance sampling scheme for simulating the degradation and failure of complex systems during finite missions , 1983, WSC '83.

[25]  Luc Bauwens,et al.  Bayesian Full Information Analysis of Simultaneous Equation Models Using Integration by Monte Carlo , 1984 .

[26]  Peter J. Bickel,et al.  S: An Interactive Environment for Data Analysis and Graphics , 1984 .

[27]  James R. Wilson Variance Reduction Techniques for Digital Simulation , 1984 .

[28]  J. E. H. Shaw,et al.  The implementation of the bayesian paradigm , 1985 .

[29]  Tj Sweeting,et al.  Invited discussion of L. Stewart: Multiparameter Bayesian inference using Monte Carlo integration - some techniques for bivariate analysis , 1985 .

[30]  Peter W. Glynn,et al.  Proceedings of Ihe 1986 Winter Simulation , 2022 .

[31]  Thomas E. Booth A Monte Carlo Learning/Biasing Experiment with Intelligent Random Numbers , 1986 .

[32]  Bruce R. Davis An Improved Importance Sampling Method for Digital Communication System Simulations , 1986, IEEE Trans. Commun..

[33]  K. Murthy,et al.  Analytical Results of Variance Reduction Characteristics of Biased Monte Carlo for Deep-Penetration Problems , 1986 .

[34]  インターグループ,et al.  SAS users guideibasics version 5 edition , 1986 .

[35]  Alan Weiss,et al.  Sensitivity analysis via likelihood ratios , 1986, WSC '86.

[36]  J. Tukey Configural polysampling , 1987 .

[37]  Robert Tibshirani,et al.  Bootstrap confidence intervals and bootstrap approximations , 1987 .

[38]  Michel C. Jeruchim,et al.  Developments in the Theory and Application of Importance Sampling , 1987, IEEE Trans. Commun..

[39]  M. D. McKay,et al.  Monte Carlo estimation under different distributions using the same simulation , 1987 .

[40]  B. Efron Better Bootstrap Confidence Intervals , 1987 .

[41]  B. Efron The jackknife, the bootstrap, and other resampling plans , 1987 .

[42]  Philip Heidelberger,et al.  Measure specific dynamic importance sampling for availability simulations , 1987, WSC '87.

[43]  M. Johns Importance Sampling for Bootstrap Confidence Intervals , 1988 .

[44]  Donald L. Iglehart,et al.  Importance sampling for stochastic simulations , 1989 .

[45]  N. Gordon,et al.  Novel approach to nonlinear/non-Gaussian Bayesian state estimation , 1993 .

[46]  Christian P. Robert,et al.  The Bayesian choice , 1994 .

[47]  T. Hesterberg,et al.  Weighted Average Importance Sampling and Defensive Mixture Distributions , 1995 .

[48]  Leonidas J. Guibas,et al.  Optimally combining sampling techniques for Monte Carlo rendering , 1995, SIGGRAPH.

[49]  B. Efron,et al.  Bootstrap confidence intervals , 1996 .

[50]  Hoon Kim,et al.  Monte Carlo Statistical Methods , 2000, Technometrics.

[51]  A. Winsor Sampling techniques. , 2000, Nursing times.

[52]  Craig B. Borkowf,et al.  Random Number Generation and Monte Carlo Methods , 2000, Technometrics.

[53]  Nando de Freitas,et al.  Rao-Blackwellised Particle Filtering for Dynamic Bayesian Networks , 2000, UAI.

[54]  A. Owen,et al.  Safe and Effective Importance Sampling , 2000 .

[55]  Ambuj,et al.  Monte Carlo Simulation of Computer System Availability / Reliability Models , 2001 .

[56]  Michael K. Pitt,et al.  Auxiliary Variable Based Particle Filters , 2001, Sequential Monte Carlo Methods in Practice.

[57]  David Thomas,et al.  The Art in Computer Programming , 2001 .

[58]  Tim Hesterberg,et al.  Monte Carlo Strategies in Scientific Computing , 2002, Technometrics.

[59]  P. Moral,et al.  Sequential Monte Carlo samplers , 2002, cond-mat/0212648.

[60]  Eric Fournié,et al.  Monte Carlo Methods in Finance , 2002 .

[61]  장윤희,et al.  Y. , 2003, Industrial and Labor Relations Terms.

[62]  A. ADoefaa,et al.  ? ? ? ? f ? ? ? ? ? , 2003 .

[63]  Petar M. Djuric,et al.  Gaussian particle filtering , 2003, IEEE Trans. Signal Process..

[64]  M. Cowles Statistical Computing: An Introduction to Data Analysis using SPlus , 2004 .

[65]  Prem K. Kythe,et al.  Handbook of Computational Methods for Integration , 2004 .

[66]  O. Cappé,et al.  Population Monte Carlo , 2004 .

[67]  C. Robert The Metropolis–Hastings Algorithm , 2015, 1504.01896.

[68]  J. Mount Importance Sampling , 2005 .

[69]  Eric Moulines,et al.  Comparison of resampling schemes for particle filtering , 2005, ISPA 2005. Proceedings of the 4th International Symposium on Image and Signal Processing and Analysis, 2005..

[70]  N. Weiss A Course in Probability , 2005 .

[71]  Mónica F. Bugallo,et al.  Multiple Particle Filtering , 2007, 2007 IEEE International Conference on Acoustics, Speech and Signal Processing - ICASSP '07.

[72]  R. Douc,et al.  Minimum variance importance sampling via Population Monte Carlo , 2007 .

[73]  A. Doucet,et al.  A Tutorial on Particle Filtering and Smoothing: Fifteen years later , 2008 .

[74]  Jean-Michel Marin,et al.  Adaptive importance sampling in general mixture classes , 2007, Stat. Comput..

[75]  E. Ionides Truncated Importance Sampling , 2008 .

[76]  M. C. Ausín Quadrature and Numerical Integration , 2008 .

[77]  E. Medova Bayesian Analysis and Markov Chain Monte Carlo Simulation , 2008 .

[78]  Jean-Marie Cornuet,et al.  Adaptive Multiple Importance Sampling , 2009, 0907.1254.

[79]  Rutger van Haasteren,et al.  Gibbs Sampling , 2010, Encyclopedia of Machine Learning.

[80]  Robert E. Kass,et al.  Importance sampling: a review , 2010 .

[81]  W. L. Dunn,et al.  Exploring Monte Carlo Methods , 2011 .

[82]  Dirk P. Kroese,et al.  Handbook of Monte Carlo Methods , 2011 .

[83]  Byron Hall Bayesian Inference , 2011 .

[84]  P. Cochat,et al.  Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.

[85]  W. Marsden I and J , 2012 .

[86]  Rémi Bardenet,et al.  Monte Carlo Methods , 2013, Encyclopedia of Social Network Analysis and Mining. 2nd Ed..

[87]  Adaptive Importance Sampling via Stochastic Convex Programming , 2014, 1412.4845.

[88]  Suojin Wang Importance Sampling including the Bootstrap , 2014 .

[89]  Mateu Sbert,et al.  Optimal combination of techniques in multiple importance sampling , 2014, VRCAI '14.

[90]  Gareth W. Peters,et al.  Improving SMC sampler estimate by recycling all past simulated particles , 2014, 2014 IEEE Workshop on Statistical Signal Processing (SSP).

[91]  Jukka Corander,et al.  An adaptive population importance sampler , 2014, 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[92]  Hera Y. He,et al.  Optimal mixture weights in multiple importance sampling , 2014, 1411.3954.

[93]  Jukka Corander,et al.  An adaptive population importance sampler , 2014, 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[94]  Ingmar Schuster,et al.  Gradient Importance Sampling , 2015, 1507.05781.

[95]  Petar M. Djuric,et al.  Resampling Methods for Particle Filtering: Classification, implementation, and strategies , 2015, IEEE Signal Processing Magazine.

[96]  Jukka Corander,et al.  An Adaptive Population Importance Sampler: Learning From Uncertainty , 2015, IEEE Transactions on Signal Processing.

[97]  O. Papaspiliopoulos,et al.  Importance Sampling: Intrinsic Dimension and Computational Cost , 2015, 1511.06196.

[98]  Mónica F. Bugallo,et al.  Bias correction for distributed Bayesian estimators , 2015, 2015 IEEE 6th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP).

[99]  Victor Elvira,et al.  A probabilistic least-mean-squares filter , 2015, 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[100]  Jukka Corander,et al.  MCMC-Driven Adaptive Multiple Importance Sampling , 2015 .

[101]  Anthony Lee,et al.  Variance estimation and allocation in the particle filter , 2015 .

[102]  Jukka Corander,et al.  A gradient adaptive population importance sampler , 2015, 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[103]  A. Gelman,et al.  Pareto Smoothed Importance Sampling , 2015, 1507.02646.

[104]  Mónica F. Bugallo,et al.  Efficient Multiple Importance Sampling Estimators , 2015, IEEE Signal Processing Letters.

[105]  Joaquín Míguez,et al.  A population Monte Carlo scheme with transformed weights and its application to stochastic kinetic models , 2012, Stat. Comput..

[106]  P. Diaconis,et al.  The sample size required in importance sampling , 2015, 1511.01437.

[107]  Mónica F. Bugallo,et al.  Heretical Multiple Importance Sampling , 2016, IEEE Signal Processing Letters.

[108]  Edward L. Ionides,et al.  Adaptive particle allocation in iterated sequential Monte Carlo via approximating meta-models , 2016, Stat. Comput..

[109]  Mónica F. Bugallo,et al.  Multiple importance sampling with overlapping sets of proposals , 2016, 2016 IEEE Statistical Signal Processing Workshop (SSP).

[110]  Mateu Sbert,et al.  Variance Analysis of Multi‐sample and One‐sample Multiple Importance Sampling , 2016, Comput. Graph. Forum.

[111]  Claudia Biermann,et al.  Mathematical Methods Of Statistics , 2016 .

[112]  Luca Martino,et al.  Weighting a resampled particle in Sequential Monte Carlo , 2016, 2016 IEEE Statistical Signal Processing Workshop (SSP).

[113]  Luca Martino,et al.  Alternative effective sample size measures for importance sampling , 2016, 2016 IEEE Statistical Signal Processing Workshop (SSP).

[114]  Petar M. Djuric,et al.  Adaptive Importance Sampling: The past, the present, and the future , 2017, IEEE Signal Processing Magazine.

[115]  Mónica F. Bugallo,et al.  Population Monte Carlo schemes with reduced path degeneracy , 2017, 2017 IEEE 7th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP).

[116]  Petar M. Djuric,et al.  Adapting the Number of Particles in Sequential Monte Carlo Methods Through an Online Scheme for Convergence Assessment , 2015, IEEE Transactions on Signal Processing.

[117]  Joaquín Míguez,et al.  Adaptive noisy importance sampling for stochastic optimization , 2017, 2017 IEEE 7th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP).

[118]  Joaquín Míguez,et al.  On the performance of nonlinear importance samplers and population Monte Carlo schemes , 2017, 2017 22nd International Conference on Digital Signal Processing (DSP).

[119]  Luca Martino,et al.  Effective sample size for importance sampling based on discrepancy measures , 2016, Signal Process..

[120]  V. Elvira,et al.  Metropolis Sampling , 2017, 1704.04629.

[121]  Mateu Sbert,et al.  Adaptive multiple importance sampling for general functions , 2017, The Visual Computer.

[122]  Jukka Corander,et al.  Layered adaptive importance sampling , 2015, Statistics and Computing.

[123]  Luca Martino,et al.  Anti-tempered layered adaptive importance sampling , 2017, 2017 22nd International Conference on Digital Signal Processing (DSP).

[124]  Luca Martino,et al.  Improving population Monte Carlo: Alternative weighting and resampling schemes , 2016, Signal Process..

[125]  Mónica F. Bugallo,et al.  Efficient linear fusion of partial estimators , 2014, Digit. Signal Process..

[126]  Petar M. Djuric,et al.  A Comparison Of Clipping Strategies For Importance Sampling , 2018, 2018 IEEE Statistical Signal Processing Workshop (SSP).

[127]  Yee Whye Teh,et al.  On Exploration, Exploitation and Learning in Adaptive Importance Sampling , 2018, ArXiv.

[128]  Mateu Sbert,et al.  Multiple importance sampling characterization by weighted mean invariance , 2018, The Visual Computer.

[129]  V. Elvira,et al.  Compressed Monte Carlo for Distributed Bayesian Inference , 2018 .

[130]  Simon Maskell,et al.  Langevin incremental mixture importance sampling , 2018, Stat. Comput..

[131]  Mónica F. Bugallo,et al.  In Search for Improved Auxiliary Particle Filters , 2018, 2018 26th European Signal Processing Conference (EUSIPCO).

[132]  Mónica F. Bugallo,et al.  Robust Covariance Adaptation in Adaptive Importance Sampling , 2018, IEEE Signal Processing Letters.

[133]  Joaquín Míguez,et al.  Analysis of a nonlinear importance sampling scheme for Bayesian parameter estimation in state-space models , 2017, Signal Process..

[134]  Joaqun Mguez,et al.  Analysis of a nonlinear importance sampling scheme for Bayesian parameter estimation in state-space models , 2018 .

[135]  Mateu Sbert,et al.  Multiple importance sampling revisited: breaking the bounds , 2018, EURASIP J. Adv. Signal Process..

[136]  Luca Martino,et al.  Group Importance Sampling for Particle Filtering and MCMC , 2017, Digit. Signal Process..

[137]  V. Elvira,et al.  New results on particle filters with adaptive number of particles , 2019, 1911.01383.

[138]  Yousef El-Laham,et al.  Recursive Shrinkage Covariance Learning in Adaptive Importance Sampling , 2019, 2019 IEEE 8th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP).

[139]  Petar M. Djuric,et al.  Elucidating the Auxiliary Particle Filter via Multiple Importance Sampling [Lecture Notes] , 2019, IEEE Signal Processing Magazine.

[140]  Pau Closas,et al.  Gauss-Hermite Quadrature for non-Gaussian Inference via an Importance Sampling Interpretation , 2019, 2019 27th European Signal Processing Conference (EUSIPCO).

[141]  David Luengo,et al.  Generalized Multiple Importance Sampling , 2015, Statistical Science.

[142]  Daniel M. Roy,et al.  Sequential Monte Carlo as approximate sampling: bounds, adaptive resampling via $\infty$-ESS, and an application to particle Gibbs , 2015, Bernoulli.

[143]  Brian M. Sadler,et al.  Approximate Shannon Sampling in Importance Sampling: Nearly Consistent Finite Particle Estimates , 2019, ArXiv.

[144]  Michael Chertkov,et al.  Importance sampling the union of rare events with an application to power systems analysis , 2017, Electronic Journal of Statistics.

[145]  Luca Martino,et al.  Efficient Adaptive Multiple Importance Sampling , 2019, 2019 27th European Signal Processing Conference (EUSIPCO).

[146]  Ignacio Santamaria,et al.  Efficient SER Estimation for MIMO Detectors via Importance Sampling Schemes , 2019, 2019 53rd Asilomar Conference on Signals, Systems, and Computers.

[147]  Mateu Sbert,et al.  Optimal Deterministic Mixture Sampling , 2019, Eurographics.

[148]  Ignacio Santamaría,et al.  Multiple Importance Sampling for Efficient Symbol Error Rate Estimation , 2019, IEEE Signal Processing Letters.

[149]  R. Everitt,et al.  Revisiting the balance heuristic for estimating normalising constants , 2019, 1908.06514.

[150]  Brian M. Sadler,et al.  Compressed Streaming Importance Sampling for Efficient Representations of Localization Distributions , 2019, 2019 53rd Asilomar Conference on Signals, Systems, and Computers.

[151]  Victor Elvira,et al.  Langevin-based Strategy for Efficient Proposal Adaptation in Population Monte Carlo , 2019, ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[152]  Nicola Branchini,et al.  Optimized Auxiliary Particle Filters , 2020 .

[153]  Mónica F. Bugallo,et al.  A survey of Monte Carlo methods for parameter estimation , 2020, EURASIP J. Adv. Signal Process..

[154]  Ignacio Santamaria,et al.  Multiple Importance Sampling for Symbol Error Rate Estimation of Maximum-Likelihood Detectors in MIMO Channels , 2021, IEEE Transactions on Signal Processing.

[155]  Pau Closas,et al.  Importance Gaussian Quadrature , 2020, IEEE Transactions on Signal Processing.

[156]  Luca Martino,et al.  Compressed Particle Methods for Expensive Models With Application in Astronomy and Remote Sensing , 2021, IEEE Transactions on Aerospace and Electronic Systems.

[157]  Victor Elvira,et al.  Optimized Population Monte Carlo , 2021, IEEE Transactions on Signal Processing.

[158]  Victor Elvira,et al.  Nearly Consistent Finite Particle Estimates in Streaming Importance Sampling , 2021, IEEE Transactions on Signal Processing.

[159]  Ömer Deniz Akyildiz,et al.  Convergence rates for optimised adaptive importance samplers , 2019, Stat. Comput..

[160]  Luca Martino,et al.  Compressed Monte Carlo with application in particle filtering , 2021, Inf. Sci..

[161]  Reza Monsefi,et al.  Hamiltonian Adaptive Importance Sampling , 2021, IEEE Signal Processing Letters.

[162]  C. Robert,et al.  Rethinking the Effective Sample Size , 2018, International Statistical Review.

[163]  Mateu Sbert,et al.  Generalizing the Balance Heuristic Estimator in Multiple Importance Sampling , 2019, Entropy.

[164]  P. Glynn LIKELIHOOD RATIO GRADIENT ESTIMATION : AN OVERVIEW by , 2022 .