The project scheduling polyhedron: Dimension, facets and lifting theorems

[1]  D. R. Fulkerson,et al.  Maximal Flow Through a Network , 1956 .

[2]  Egon Balas,et al.  PROJECT SCHEDULING WITH RESOURCE CONSTRAINTS. , 1968 .

[3]  Egon Balas,et al.  Machine Sequencing Via Disjunctive Graphs: An Implicit Enumeration Algorithm , 1969, Oper. Res..

[4]  Philip M. Wolfe,et al.  Multiproject Scheduling with Limited Resources: A Zero-One Programming Approach , 1969 .

[5]  A. J. Clewett,et al.  Introduction to sequencing and scheduling , 1974 .

[6]  Manfred W. Padberg Technical Note - A Note on Zero-One Programming , 1975, Oper. Res..

[7]  Laurence A. Wolsey,et al.  Technical Note - Facets and Strong Valid Inequalities for Integer Programs , 1976, Oper. Res..

[8]  James H. Patterson,et al.  Scheduling a Project Under Multiple Resource Constraints: A Zero-One Programming Approach , 1976 .

[9]  Eitan Zemel,et al.  Lifting the facets of zero–one polytopes , 1978, Math. Program..

[10]  E. W. Davis,et al.  Multiple Resource–Constrained Scheduling Using Branch and Bound , 1978 .

[11]  Jan Karel Lenstra,et al.  Scheduling subject to resource constraints: classification and complexity , 1983, Discret. Appl. Math..

[12]  James H. Patterson,et al.  A Comparison of Exact Approaches for Solving the Multiple Constrained Resource, Project Scheduling Problem , 1984 .

[13]  E. Balas On the facial structure of scheduling polyhedra , 1985 .

[14]  J. M. Tamarit,et al.  Project scheduling with resource constraints: A branch and bound approach , 1987 .

[15]  Ramón Alvarez-Valdés Olaguíbel,et al.  Chapter 5 – HEURISTIC ALGORITHMS FOR RESOURCE-CONSTRAINED PROJECT SCHEDULING: A REVIEW AND AN EMPIRICAL ANALYSIS , 1989 .