The Tumultuous Formation of the Hubble Sequence at z > 1 Examined with HST/WFC3 Observations of the Hubble Ultra Deep Field

We examine in this paper a stellar mass selected sample of galaxies at 1 1. By using a locally defined definition of disk and elliptical galaxies based on structure and spectral-type, we find no true ellipticals at z > 2, and a fraction of 3.2+/-2.3% at 1.5 10^{10} M_sol, consistent with previous results from ACS and NICMOS. We compare our results to semi-analytical model results and find a relatively good agreement between our morphological break-down and the predictions. Finally, we argue that the peculiars, ellipticals and peculiar ellipticals have similar properties, suggesting similar formation modes, likely driven by major mergers.

[1]  M. Wittkowski,et al.  SiO maser emission in Miras , 2008, 0811.2770.

[2]  G. D. Illingworth,et al.  ACTIVE AND PASSIVE GALAXIES AT z ∼ 2: REST-FRAME OPTICAL MORPHOLOGIES WITH WFC3 , 2010, 1007.2422.

[3]  A. Cimatti,et al.  The evolution of the galaxy B-band rest-frame morphology to z ∼ 2: new clues from the K20/GOODS sample , 2004, astro-ph/0411768.

[4]  Douglas Scott,et al.  The Hubble Space Telescope GOODS NICMOS Survey: Overview and the Evolution of Massive Galaxies at 1.5 < z < 3 , 2010, 1010.1164.

[5]  Christopher J. Conselice,et al.  The Relationship between Stellar Light Distributions of Galaxies and Their Formation Histories , 2003 .

[6]  D. Schiminovich,et al.  MORPHOLOGIES OF LOCAL LYMAN BREAK GALAXY ANALOGS. II. A COMPARISON WITH GALAXIES AT z ≃ 2–4 IN ACS AND WFC3 IMAGES OF THE HUBBLE ULTRA DEEP FIELD , 2009, 0911.1279.

[7]  Alexander S. Szalay,et al.  The Unusual Infrared Object HDF-N J123656.3+621322 , 1999, astro-ph/9908083.

[8]  M. Livio,et al.  On the Morphology of the HST Faint Galaxies , 1996 .

[9]  N. R. Tanvir,et al.  Galaxy morphology to I = 25 mag in the Hubble Deep Field , 1996 .

[10]  Mark Dickinson,et al.  Size Evolution of the Most Massive Galaxies at 1.7 < z < 3 from GOODS NICMOS Survey Imaging , 2008, 0807.4141.

[11]  Carnegie-Mellon,et al.  A Unified, Merger-driven Model of the Origin of Starbursts, Quasars, the Cosmic X-Ray Background, Supermassive Black Holes, and Galaxy Spheroids , 2005, astro-ph/0506398.

[12]  Scott C. Chapman,et al.  Evidence for a Major Merger Origin of High-Redshift Submillimeter Galaxies , 2003, astro-ph/0308198.

[13]  C. Conselice,et al.  Galaxy Populations and Evolution in Clusters. II. Defining Cluster Populations , 2002, astro-ph/0202497.

[14]  Puragra Guhathakurta,et al.  A catalog of digital images of 113 nearby galaxies , 1996 .

[15]  The Structural Properties of Isolated Galaxies, Spiral-Spiral Pairs, and Mergers: The Robustness of Galaxy Morphology during Secular Evolution , 2004, astro-ph/0410722.

[16]  S. Ravindranath,et al.  AGN Host Galaxies at z ~ 0.4-1.3: Bulge-dominated and Lacking Merger-AGN Connection , 2005, astro-ph/0507091.

[17]  Matthew A. Bershady,et al.  The asymmetry of galaxies: physical morphology for nearby and high redshift galaxies , 1999 .

[18]  Dependence of Galaxy Structure on Rest-Frame Wavelength and Galaxy Type* , 2006, astro-ph/0612558.

[19]  Christopher J. Conselice,et al.  Early and Rapid Merging as a Formation Mechanism of Massive Galaxies: Empirical Constraints , 2005, astro-ph/0507146.

[20]  A. Cimatti,et al.  The rapid formation of a large rotating disk galaxy three billion years after the Big Bang , 2006, Nature.

[21]  Casey Papovich,et al.  A Direct Measurement of Major Galaxy Mergers at z 3 , 2003 .

[22]  H. Rix,et al.  HISTORY OF GALAXY INTERACTIONS AND THEIR IMPACT ON STAR FORMATION OVER THE LAST 7 Gyr FROM GEMS , 2009, 0903.3700.

[23]  A. Benson,et al.  The origin of the Hubble sequence in ΛCDM cosmology , 2009, 0911.4480.

[24]  P. Madau,et al.  A NEW NONPARAMETRIC APPROACH TO GALAXY MORPHOLOGICAL CLASSIFICATION , 2003, astro-ph/0311352.

[25]  N. Benı́tez Bayesian Photometric Redshift Estimation , 1998, astro-ph/9811189.

[26]  L. Ho,et al.  Detailed structural decomposition of galaxy images , 2002, astro-ph/0204182.

[27]  Christopher J. Conselice,et al.  The structures of distant galaxies – III. The merger history of over 20 000 massive galaxies at z < 1.2 , 2008, 0812.3237.

[28]  Rodger I. Thompson,et al.  The NICMOS Ultra Deep Field: Observations, Data Reduction, and Galaxy Photometry , 2005, astro-ph/0503504.

[29]  Christopher J. Conselice The fundamental properties of galaxies and a new galaxy classification system , 2006 .

[30]  M. Nonino,et al.  A DETAILED STUDY OF PHOTOMETRIC REDSHIFTS FOR GOODS-SOUTH GALAXIES , 2010, 1009.3504.

[31]  Bruce G. Elmegreen,et al.  Galaxy Morphologies in the Hubble Ultra Deep Field: Dominance of Linear Structures at the Detection Limit , 2005 .

[32]  S. M. Fall,et al.  The Morphological Diversities among Star-forming Galaxies at High Redshifts in the Great Observatories Origins Deep Survey , 2006, astro-ph/0606696.

[33]  R. Teyssier,et al.  Cold streams in early massive hot haloes as the main mode of galaxy formation , 2008, Nature.

[34]  Granada,et al.  Galaxies in the Hubble Ultra Deep Field. I. Detection, Multiband Photometry, Photometric Redshifts, and Morphology , 2006, astro-ph/0605262.

[35]  C. Conselice,et al.  A comparison of galaxy merger history observations and predictions from semi-analytic models , 2009, 0904.2365.

[36]  M. S. Roberts,et al.  Physical Parameters Along the Hubble Sequence , 1994 .

[37]  Marcia J. Rieke,et al.  The Near-Infrared Camera and Multi-Object Spectrometer Ultra Deep Field: Observations, Data Reduction, and Galaxy Photometry , 2005 .

[38]  C. Conselice,et al.  Strong size evolution of the most massive galaxies since z~2 , 2007, 0709.0621.

[39]  Casey Papovich,et al.  The Luminosity, Stellar Mass, and Number Density Evolution of Field Galaxies of Known Morphology from z = 0.5 to 3 , 2004, astro-ph/0405001.

[40]  C. Conselice,et al.  The structures of distant galaxies – I. Galaxy structures and the merger rate to z∼ 3 in the Hubble Ultra-Deep Field , 2007, 0711.2333.

[41]  D. Weedman,et al.  Colors and magnitudes predicted for high redshift galaxies , 1980 .

[42]  A. Cimatti,et al.  Kinemetry of SINS High-Redshift Star-Forming Galaxies: Distinguishing Rotating Disks from Major Mergers , 2008, 0802.0879.

[43]  H. Rix,et al.  THE MAJORITY OF COMPACT MASSIVE GALAXIES AT z ∼ 2 ARE DISK DOMINATED , 2011, 1101.2423.

[44]  UCOLick,et al.  Submitted to ApJ Preprint typeset using L ATEX style emulateapj v. 6/22/04 THE MASS ASSEMBLY HISTORY OF FIELD GALAXIES: DETECTION OF AN EVOLVING MASS LIMIT FOR STAR FORMING GALAXIES , 2005 .

[45]  M. Giavalisco,et al.  The Great Observatories Origins Deep Survey: Initial results from optical and near-infrared imaging , 2003, astro-ph/0309105.

[46]  I. Trujillo,et al.  The properties and evolution of a K-band selected sample of massive galaxies at z∼ 0.4–2 in the Palomar/DEEP2 survey , 2007, 0708.1040.

[47]  Massimo Stiavelli,et al.  The Hubble Ultra Deep Field , 2003, astro-ph/0607632.

[48]  G. Helou,et al.  The Role of Galaxy Interactions and Mergers in Star Formation at z ≤ 1.3: Mid-Infrared Properties in the Spitzer First Look Survey , 2007, astro-ph/0701040.

[49]  The Symmetry, Color, and Morphology of Galaxies , 1997, astro-ph/9710234.

[50]  Anna Jangren,et al.  STRUCTURAL AND PHOTOMETRIC CLASSIFICATION OF GALAXIES. I. CALIBRATION BASED ON A NEARBY GALAXY SAMPLE , 2000 .

[51]  M. Franx,et al.  UV CONTINUUM SLOPE AND DUST OBSCURATION FROM z ∼ 6 TO z ∼ 2: THE STAR FORMATION RATE DENSITY AT HIGH REDSHIFT , 2009, 0909.4074.

[52]  A. Kinney,et al.  Template ultraviolet to near-infrared spectra of star-forming galaxies and their application to K-corrections , 1996 .