Graph 3-coloring with a hybrid self-adaptive evolutionary algorithm

This paper proposes a hybrid self-adaptive evolutionary algorithm for graph coloring that is hybridized with the following novel elements: heuristic genotype-phenotype mapping, a swap local search heuristic, and a neutral survivor selection operator. This algorithm was compared with the evolutionary algorithm with the SAW method of Eiben et al., the Tabucol algorithm of Hertz and de Werra, and the hybrid evolutionary algorithm of Galinier and Hao. The performance of these algorithms were tested on a test suite consisting of randomly generated 3-colorable graphs of various structural features, such as graph size, type, edge density, and variability in sizes of color classes. Furthermore, the test graphs were generated including the phase transition where the graphs are hard to color. The purpose of the extensive experimental work was threefold: to investigate the behavior of the tested algorithms in the phase transition, to identify what impact hybridization with the DSatur traditional heuristic has on the evolutionary algorithm, and to show how graph structural features influence the performance of the graph-coloring algorithms. The results indicate that the performance of the hybrid self-adaptive evolutionary algorithm is comparable with, or better than, the performance of the hybrid evolutionary algorithm which is one of the best graph-coloring algorithms today. Moreover, the fact that all the considered algorithms performed poorly on flat graphs confirms that graphs of this type are really the hardest to color.

[1]  David S. Johnson,et al.  An application of graph coloring to printed circuit testing , 1975, 16th Annual Symposium on Foundations of Computer Science (sfcs 1975).

[2]  Gerhard J. Woeginger,et al.  Graph colorings , 2005, Theor. Comput. Sci..

[3]  M. Friedman The Use of Ranks to Avoid the Assumption of Normality Implicit in the Analysis of Variance , 1937 .

[4]  Alain Hertz,et al.  Variable space search for graph coloring , 2006, Discret. Appl. Math..

[5]  Peter F. Stadler,et al.  Towards a theory of landscapes , 1995 .

[6]  John L. Hennessy,et al.  The priority-based coloring approach to register allocation , 1990, TOPL.

[7]  Cecilia R. Aragon,et al.  Optimization by Simulated Annealing: An Experimental Evaluation; Part I, Graph Partitioning , 1989, Oper. Res..

[8]  Alain Hertz,et al.  A variable neighborhood search for graph coloring , 2003, Eur. J. Oper. Res..

[9]  Hakim Mabed,et al.  Genetic Tabu search for robust fixed channel assignment under dynamic traffic data , 2011, Comput. Optim. Appl..

[10]  D. de Werra,et al.  An introduction to timetabling , 1985 .

[11]  H. Waelbroeck,et al.  Complex Systems and Binary Networks , 1995 .

[12]  Thomas Bäck,et al.  Evolutionary algorithms in theory and practice - evolution strategies, evolutionary programming, genetic algorithms , 1996 .

[13]  Cecilia R. Aragon,et al.  Optimization by Simulated Annealing: An Experimental Evaluation; Part II, Graph Coloring and Number Partitioning , 1991, Oper. Res..

[14]  Feng Luo,et al.  Exploring the k-colorable landscape with Iterated Greedy , 1993, Cliques, Coloring, and Satisfiability.

[16]  J. R. Brown Chromatic Scheduling and the Chromatic Number Problem , 1972 .

[17]  Riccardo Poli,et al.  New ideas in optimization , 1999 .

[18]  Sanja Petrovic,et al.  A graph-based hyper-heuristic for educational timetabling problems , 2007, Eur. J. Oper. Res..

[19]  Janez Brest,et al.  Using differential evolution for the graph coloring , 2011, 2011 IEEE Symposium on Differential Evolution (SDE).

[20]  Dominique de Werra,et al.  On a Graph-theoretical Model for Cyclic Register Allocation , 1999, Discret. Appl. Math..

[21]  Charles Fleurent,et al.  Genetic and hybrid algorithms for graph coloring , 1996, Ann. Oper. Res..

[22]  Stefan Boettcher,et al.  Extremal optimization at the phase transition of the three-coloring problem. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[23]  Jakub Marecek,et al.  Handbook of Approximation Algorithms and Metaheuristics , 2010, Comput. J..

[24]  M. Trick,et al.  Cliques, Coloring, and Satisfiability: Second DIMACS Implementation Challenge, Workshop, October 11-13, 1993 , 1996 .

[25]  Zbigniew Michalewicz,et al.  Genetic Algorithms + Data Structures = Evolution Programs , 1992, Artificial Intelligence.

[26]  A. E. Eiben,et al.  Introduction to Evolutionary Computing , 2003, Natural Computing Series.

[27]  Celia A. Glass Bag rationalisation for a food manufacturer , 2002, J. Oper. Res. Soc..

[28]  Michel Gamache,et al.  A graph coloring model for a feasibility problem in monthly crew scheduling with preferential bidding , 2007, Comput. Oper. Res..

[29]  Yves Crama,et al.  Local Search in Combinatorial Optimization , 2018, Artificial Neural Networks.

[30]  Christian Blum,et al.  Hybrid metaheuristics in combinatorial optimization: A survey , 2011, Appl. Soft Comput..

[31]  Nicolas Zufferey,et al.  A Reactive Tabu Search Using Partial Solutions for the Graph Coloring Problem , 2004 .

[32]  M. Kimura Evolutionary Rate at the Molecular Level , 1968, Nature.

[33]  Derek H. Smith,et al.  Improving heuristics for the frequency assignment problem , 1998, Eur. J. Oper. Res..

[34]  Brian Hayes,et al.  On the Threshold , 2003, American Scientist.

[35]  Thomas Stützle,et al.  Stochastic Local Search Algorithms for the Graph Colouring Problem Stochastic Local Search Algorithms for the Graph Colouring Problem , 2005 .

[36]  Jin-Kao Hao,et al.  A New Genetic Local Search Algorithm for Graph Coloring , 1998, PPSN.

[37]  Paolo Toth,et al.  A survey on vertex coloring problems , 2010, Int. Trans. Oper. Res..

[38]  Vahid Lotfi,et al.  A graph coloring algorithm for large scale scheduling problems , 1986, Comput. Oper. Res..

[39]  Alain Hertz,et al.  A survey of local search methods for graph coloring , 2004, Comput. Oper. Res..

[40]  Thomas Stützle,et al.  Stochastic Local Search: Foundations & Applications , 2004 .

[41]  Paolo Toth,et al.  A Metaheuristic Approach for the Vertex Coloring Problem , 2008, INFORMS J. Comput..

[42]  Ellis Horowitz,et al.  Fundamentals of Computer Algorithms , 1978 .

[43]  Fred W. Glover,et al.  Future paths for integer programming and links to artificial intelligence , 1986, Comput. Oper. Res..

[44]  David S. Johnson,et al.  Cliques, Coloring, and Satisfiability , 1996 .

[45]  Alain Hertz,et al.  An adaptive memory algorithm for the k-coloring problem , 2003, Discret. Appl. Math..

[46]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[47]  D. J. A. Welsh,et al.  A randomised 3-colouring algorithm , 1989, Discret. Math..

[48]  Bernd Freisleben,et al.  Fitness landscapes and memetic algorithm design , 1999 .

[49]  Jin-Kao Hao,et al.  A memetic algorithm for graph coloring , 2010, Eur. J. Oper. Res..

[50]  Thomas Stützle,et al.  An Analysis of Heuristics for Vertex Colouring , 2010, SEA.

[51]  Fred W. Glover,et al.  A Study of Tabu Search for Coloring Random 3-Colorable Graphs Around the Phase Transition , 2010, Int. J. Appl. Metaheuristic Comput..

[52]  J. A. Bondy,et al.  Graph Theory , 2008, Graduate Texts in Mathematics.

[53]  C.J.H. Mann,et al.  Handbook of Approximation: Algorithms and Metaheuristics , 2008 .

[54]  A. Gamst,et al.  Some lower bounds for a class of frequency assignment problems , 1986, IEEE Transactions on Vehicular Technology.

[55]  D. Werra,et al.  Some experiments with simulated annealing for coloring graphs , 1987 .

[56]  Janez Demsar,et al.  Statistical Comparisons of Classifiers over Multiple Data Sets , 2006, J. Mach. Learn. Res..

[57]  Marc Toussaint,et al.  Neutrality and self-adaptation , 2003, Natural Computing.

[58]  Zbigniew Michalewicz,et al.  Genetic algorithms + data structures = evolution programs (2nd, extended ed.) , 1994 .

[59]  Peter C. Cheeseman,et al.  Where the Really Hard Problems Are , 1991, IJCAI.

[60]  Jonathan S. Turner,et al.  Almost All k-Colorable Graphs are Easy to Color , 1988, J. Algorithms.

[61]  Alain Hertz,et al.  Using tabu search techniques for graph coloring , 1987, Computing.

[62]  Zbigniew Michalewicz,et al.  Parameter Control in Evolutionary Algorithms , 2007, Parameter Setting in Evolutionary Algorithms.

[63]  Nicolas Zufferey,et al.  A graph coloring heuristic using partial solutions and a reactive tabu scheme , 2008, Comput. Oper. Res..

[64]  Christian Blum,et al.  Metaheuristics in combinatorial optimization: Overview and conceptual comparison , 2003, CSUR.

[65]  Jano I. van Hemert,et al.  Graph Coloring with Adaptive Evolutionary Algorithms , 1998, J. Heuristics.

[66]  Daniel Brélaz,et al.  New methods to color the vertices of a graph , 1979, CACM.

[67]  M. Friedman A Comparison of Alternative Tests of Significance for the Problem of $m$ Rankings , 1940 .

[68]  Jin-Kao Hao,et al.  Hybrid Evolutionary Algorithms for Graph Coloring , 1999, J. Comb. Optim..

[69]  T. Stützle,et al.  An application of Iterated Local Search to the Graph Coloring Problem , 2007 .