A Unified Theory for the Atmospheres of the Hot and Very Hot Jupiters: Two Classes of Irradiated Atmospheres

We highlight the potential importance of gaseous TiO and VO opacity on the highly irradiated close-in giant planets. The atmospheres of these planets naturally fall in to two classes that are somewhat analogous to the Mand L-type dwarfs. Those that are warm enough to have appreciable opacity due to TiO and VO gases we term the “pM Class” planets, and those that are cooler, such that Ti and V are predominantly in solid condensates, we term “pL Class” planets. The optical spectra of pL Class planets are dominated by neutral atomic Na and K absorption. We calculate model atmospheres for these planets, including pressure-temperature profiles, spectra, and characteristic radiative time constants. Planets that have temperature inversions (hot stratospheres) of �2000 K and appear “anomalously” bright in the mid infrared at secondary eclipse, as was recently found for planets HD 149026b and HD 209458b, we term the pM Class. Molecular bands of TiO, VO, H2O, and CO will be seen in emission, rather than absorption. This class of planets a bsorbs incident flux and emits thermal flux from high in their atmospheres. Consequently, they will have large day/night temperature contrasts and negligible phase shifts between orbital phase and thermal emission light curves, because radiative timescales are much shorter than possible dynamical timescales. The pL Class planets absorb incident flux deeper in the atmosphere where atmospheric dynamics will more readily redistribute absorbed energy. This leads to cooler day sides, warmer night sides, and larger phase shifts in thermal emission lig ht curves. We briefly examine the transit radii for both classes of planets. The boundary between these classes is particularly dependent on the incident flux from the parent star, and less so on the temperature of the planet’s in ternal adiabat (which depends on mass and age), and surface gravity. Around a Sun-like primary, for solar composition, this boundary likely occurs at �0.04-0.05 AU, but uncertainties remain. We apply these results to pM Class transiting planets that are observable with the Spitzer Space Telescope, including HD 209458b, WASP-1b, TrES-3b, TrES-4b, HD 149026b, and others. The eccentric transiting planets HD 147506b and HD 17156b alternate between the classes during their orbits. Thermal emission in the optical from pM Class planets is significant red-ward o f 400 nm, making these planets attractive targets for optical detection via Kepler, COROT, and from the ground. The difference in the observed day/night contrast

[1]  A. Burrows,et al.  Theory of Extrasolar Giant Planet Transits , 2001, astro-ph/0101024.

[2]  T. Barman Identification of Absorption Features in an Extrasolar Planet Atmosphere , 2007, 0704.1114.

[3]  C. Helling,et al.  Dust in brown dwarfs. V. Growth and evaporation of dirty dust grains , 2006 .

[4]  David Charbonneau,et al.  TrES-3: A Nearby, Massive, Transiting Hot Jupiter in a 31 Hour Orbit , 2007, 0705.2004.

[5]  D. SaumonT. Guillot Shock Compression of Deuterium and the Interiors of Jupiter and Saturn , 2004 .

[6]  A. Burrows,et al.  A Spitzer Spectrum of the Exoplanet HD 189733b , 2007 .

[7]  Drake Deming,et al.  The Phase-Dependent Infrared Brightness of the Extrasolar Planet ʊ Andromedae b , 2006, Science.

[8]  Drake Deming,et al.  Infrared radiation from an extrasolar planet , 2005, Nature.

[9]  B. Fegley,et al.  Atmospheric Chemistry in Giant Planets, Brown Dwarfs, and Low-Mass Dwarf Stars. II. Sulfur and Phosphorus , 2005, astro-ph/0511136.

[10]  Roger V. Yelle,et al.  Aeronomy of extra-solar giant planets at small orbital distances , 2003 .

[11]  A time-dependent radiative model of HD 209458b , 2004, astro-ph/0409468.

[12]  C P McKay,et al.  Thermal structure of Uranus' atmosphere. , 1999, Icarus.

[13]  David Charbonneau,et al.  Theoretical Spectral Models of the Planet HD 209458b with a Thermal Inversion and Water Emission Bands , 2007, 0709.3980.

[14]  D. Charbonneau,et al.  Hot nights on extrasolar planets: mid‐infrared phase variations of hot Jupiters , 2007, 0705.1189.

[15]  T. Guillot,et al.  Atmospheric, Evolutionary, and Spectral Models of the Brown Dwarf Gliese 229 B , 1996, Science.

[16]  Drake Deming,et al.  The hottest planet , 2007, Nature.

[17]  R. Gilliland,et al.  Detection of an Extrasolar Planet Atmosphere , 2001, astro-ph/0111544.

[18]  Curtis S. Cooper,et al.  Dynamic Meteorology at the Photosphere of HD 209458b , 2005, astro-ph/0502476.

[19]  William B. Hubbard,et al.  A Theory for the Radius of the Transiting Giant Planet HD 209458b , 2003, astro-ph/0305277.

[20]  David G. Monet,et al.  Dwarfs Cooler than “M”: The Definition of Spectral Type “L” Using Discoveries from the 2-Micron All-Sky Survey (2MASS) , 1999 .

[21]  David R. Alexander,et al.  The NEXTGEN Model Atmosphere Grid. II. Spherically Symmetric Model Atmospheres for Giant Stars with Effective Temperatures between 3000 and 6800 K , 1999, astro-ph/9907194.

[22]  D. Saumon,et al.  Atmosphere, Interior, and Evolution of the Metal-rich Transiting Planet HD 149026b , 2006 .

[23]  David R. Alexander,et al.  THE LIMITING EFFECTS OF DUST IN BROWN DWARF MODEL ATMOSPHERES , 2001 .

[24]  J. Davy Kirkpatrick,et al.  New spectral types L and T , 2005 .

[25]  Adam Burrows,et al.  The Near-Infrared and Optical Spectra of Methane Dwarfs and Brown Dwarfs , 1999, astro-ph/9908078.

[26]  Jonathan Tennyson,et al.  Water vapour in the atmosphere of a transiting extrasolar planet , 2007, Nature.

[27]  A. Burrows,et al.  Chemical Equilibrium Abundances in Brown Dwarf and Extrasolar Giant Planet Atmospheres , 1999 .

[28]  B. Fegley,et al.  The abundance and relative volatility of refractory trace elements in Allende Ca,Al-rich inclusions - Implications for chemical and physical processes in the solar nebula , 1986 .

[29]  I. Hubeny,et al.  A Possible Bifurcation in Atmospheres of Strongly Irradiated Stars and Planets , 2003 .

[30]  S. Seager,et al.  Clouds and chemistry: Ultracool dwarf atmospheric properties from optical and infrared colors , 2002 .

[31]  M. Barbieri,et al.  HD 17156b: A Transiting Planet with a 21.2 Day Period and an Eccentric Orbit , 2007, 0710.0898.

[32]  J. S. Hogan,et al.  Radiative-convective equilibrium models of Jupiter and Saturn , 1984 .

[33]  Drake Deming,et al.  Infrared Observations during the Secondary Eclipse of HD 209458b. II. Strong Limits on the Infrared Spectrum Near 2.2 μm , 2003, astro-ph/0307297.

[34]  Saurabh Jha,et al.  An extrasolar planet that transits the disk of its parent star , 2003, Nature.

[35]  K. Lodders Alkali Element Chemistry in Cool Dwarf Atmospheres , 1999 .

[36]  Curtis S. Cooper,et al.  Dynamics and Disequilibrium Carbon Chemistry in Hot Jupiter Atmospheres, with Application to HD 209458b , 2006 .

[37]  R. Paul Butler,et al.  Three New “51 Pegasi-Type” Planets , 1997 .

[38]  T. Guillot,et al.  A Nongray Theory of Extrasolar Giant Planets and Brown Dwarfs , 1997, astro-ph/9705201.

[39]  Adam Burrows,et al.  Phase Functions and Light Curves of Wide-Separation Extrasolar Giant Planets , 2005 .

[40]  Gilles Chabrier,et al.  Heat transport in giant (exo)planets: a new perspective , 2007 .

[41]  I. Hubeny,et al.  Possible Solutions to the Radius Anomalies of Transiting Giant Planets , 2006 .

[42]  Sara Seager,et al.  Hot Jupiter Variability in Eclipse Depth , 2006, astro-ph/0612413.

[43]  Ammonia as a tracer of chemical equilibrium in the T7.5 dwarf Gliese 570D , 2006, astro-ph/0605563.

[44]  Sara Seager,et al.  On the Insignificance of Photochemical Hydrocarbon Aerosols in the Atmospheres of Close-in Extrasolar Giant Planets , 2004 .

[45]  A. Burrows,et al.  THEORETICAL RADII OF TRANSITING GIANT PLANETS: THE CASE OF OGLE-TR-56b , 2004, astro-ph/0405264.

[46]  David Charbonneau,et al.  The 3.6-8.0 μm Broadband Emission Spectrum of HD 209458b: Evidence for an Atmospheric Temperature Inversion , 2007, 0709.3984.

[47]  David Charbonneau,et al.  A map of the day–night contrast of the extrasolar planet HD 189733b , 2007, Nature.

[48]  A. Sozzetti,et al.  HD 147506b: A Supermassive Planet in an Eccentric Orbit Transiting a Bright Star , 2007, 0705.0126.

[49]  John W. Mason Astrophysics update 2 , 2006 .

[50]  S. Seager,et al.  Toward Eclipse Mapping of Hot Jupiters , 2006, astro-ph/0612412.

[51]  Murry L. Salby,et al.  Fundamentals of atmospheric physics , 1995 .

[52]  Drake Deming,et al.  Accepted for publication in the Astrophysical Journal Strong Infrared Emission from the Extrasolar Planet HD189733b , 2006 .

[53]  I. Hubeny,et al.  Theory for the Secondary Eclipse Fluxes, Spectra, Atmospheres, and Light Curves of Transiting Extrasolar Giant Planets , 2006, astro-ph/0607014.

[54]  G. Laughlin,et al.  Observational Consequences of Hydrodynamic Flows on Hot Jupiters , 2007, astro-ph/0702700.

[55]  Drake Deming,et al.  A spectrum of an extrasolar planet , 2007, Nature.

[56]  A. P. Showman,et al.  The Influence of Atmospheric Dynamics on the Infrared Spectra and Light Curves of Hot Jupiters , 2006 .

[57]  Jason T. Wright,et al.  Five Intermediate-Period Planets from the N2K Sample , 2007, 0704.1191.

[58]  C. McKay,et al.  Rapid calculation of radiative heating rates and photodissociation rates in inhomogeneous multiple scattering atmospheres , 1989 .

[59]  D. Queloz,et al.  Two new “very hot Jupiters” among the OGLE transiting candidates , 2004 .

[60]  Andrew S. Ackerman,et al.  Precipitating Condensation Clouds in Substellar Atmospheres , 2001, astro-ph/0103423.

[61]  L. J. Richardson,et al.  On the Dayside Thermal Emission of Hot Jupiters , 2005 .

[62]  David Charbonneau,et al.  TrES-4: A Transiting Hot Jupiter of Very Low Density , 2007, 0708.0834.

[63]  Peter H. Hauschildt,et al.  Phase-dependent Properties of Extrasolar Planet Atmospheres , 2005 .

[64]  David Charbonneau,et al.  PRECISE RADIUS ESTIMATES FOR THE EXOPLANETS WASP-1b AND WASP-2b , 2007 .

[65]  R. Akeson,et al.  The Mid-Infrared Spectrum of the Transiting Exoplanet HD 209458b , 2007, astro-ph/0702593.

[66]  K. Lodders Solar System Abundances and Condensation Temperatures of the Elements , 2003 .

[67]  M. López-Morales,et al.  Thermal Emission from Transiting Very Hot Jupiters: Prospects for Ground-based Detection at Optical Wavelengths , 2007, 0708.0822.

[68]  Mark S. Marley,et al.  Analysis of Spitzer Spectra of Irradiated Planets: Evidence for Water Vapor? , 2007, 0705.2457.

[69]  W. Vacca,et al.  Accepted for publication in ApJ Preprint typeset using L ATEX style emulateapj v. 10/09/06 ATMOSPHERIC PARAMETERS OF FIELD L AND T DWARFS 1 , 2022 .

[70]  Adam Burrows,et al.  Theoretical Spectra and Atmospheres of Extrasolar Giant Planets , 2003 .

[71]  B. Fegley,et al.  Atmospheric Chemistry in Giant Planets, Brown Dwarfs, and Low-Mass Dwarf Stars: I. Carbon, Nitrogen, and Oxygen , 2002 .

[72]  Comparative Planetary Atmospheres: Models of TrES-1 and HD 209458b , 2005, astro-ph/0505359.

[73]  P. H. Hauschildt,et al.  Evolutionary models for cool brown dwarfs and extrasolar giant planets. The case of HD 209458 , 2003 .

[74]  T. Barman,et al.  Two Classes of Hot Jupiters , 2007, 0706.3052.

[75]  D. Mouillet,et al.  Giant Planet Companion to 2MASSW J1207334-393254 , 2005 .

[76]  Adam Burrows,et al.  ALBEDO AND REFLECTION SPECTRA OF EXTRASOLAR GIANT PLANETS , 1999 .

[77]  Y. Yung,et al.  Atmospheric Radiation: Theoretical Basis , 1989 .

[78]  AZ,et al.  Characterization of the hot Neptune GJ 436 b with Spitzer and ground-based observations , 2007, 0707.3809.

[79]  T. Brown Transmission Spectra as Diagnostics of Extrasolar Giant Planet Atmospheres , 2001, astro-ph/0101307.

[80]  J. W. Chamberlain Theory of planetary atmospheres , 1978 .

[81]  Drake Deming,et al.  Spitzer Transit and Secondary Eclipse Photometry of GJ 436b , 2007, 0707.2778.

[82]  S. Seager,et al.  PHOTOMETRIC LIGHT CURVES AND POLARIZATION OF CLOSE-IN EXTRASOLAR GIANT PLANETS , 2000 .

[83]  J. Fortney,et al.  Resolving the Surfaces of Extrasolar Planets with Secondary Eclipse Light Curves , 2006, astro-ph/0601092.

[84]  M. Marley,et al.  Line and Mean Opacities for Ultracool Dwarfs and Extrasolar Planets , 2007, 0706.2374.

[85]  A. Burrows,et al.  On the Indirect Detection of Sodium in the Atmosphere of the Planetary Companion to HD 209458 , 2002, astro-ph/0208263.

[86]  D. Stevenson Cosmochemistry and structure of the giant planets and their satellites , 1985 .

[87]  Princeton,et al.  Theoretical Transmission Spectra during Extrasolar Giant Planet Transits , 1999, astro-ph/9912241.

[88]  A. Burrows,et al.  Atomic and Molecular Opacities for Brown Dwarf and Giant Planet Atmospheres , 2006, astro-ph/0607211.

[89]  C. McKay,et al.  The thermal structure of Titan's atmosphere. , 1989, Icarus.

[90]  Tristan Guillot,et al.  Atmospheric circulation and tides of ``51 Pegasus b-like'' planets , 2002 .

[91]  Jonathan J. Fortney,et al.  The effect of condensates on the characterization of transiting planet atmospheres with transmission spectroscopy , 2005, astro-ph/0509292.

[92]  Carnegie,et al.  HAT-P-1b: A Large-Radius, Low-Density Exoplanet Transiting One Member of a Stellar Binary* ** , 2007 .

[93]  I. Dobbs-Dixon,et al.  Atmospheric Dynamics of Short-Period Extrasolar Gas Giant Planets. I. Dependence of Nightside Temperature on Opacity , 2007, 0704.3269.

[94]  K. Lodders Titanium and Vanadium Chemistry in Low-Mass Dwarf Stars , 2002 .

[95]  PHYSICAL PARAMETERS OF TWO VERY COOL T DWARFS , 2006, astro-ph/0611062.

[96]  Avi Shporer,et al.  The Transit Light Curve Project. VII. The Not-So-Bloated Exoplanet HAT-P-1b , 2007, 0707.1908.

[97]  David Charbonneau,et al.  Detection of Thermal Emission from an Extrasolar Planet , 2005 .

[98]  Michel Mayor,et al.  ELODIE metallicity-biased search for transiting Hot Jupiters. II. A very hot Jupiter transiting the bright K star HD 189733 , 2005 .