Highly functionalized cyclic β-amino acid moieties as promising scaffolds in peptide research and drug design

[1]  M. Haukka,et al.  Chemoselective, Substrate-directed Fluorination of Functionalized Cyclopentane β-Amino Acids. , 2016, Chemistry, an Asian journal.

[2]  F. Fülöp,et al.  Synthesis of fluorinated piperidine and azepane β-amino acid derivatives , 2016 .

[3]  F. Fülöp,et al.  A Stereocontrolled Protocol to Highly Functionalized Fluorinated Scaffolds through a Fluoride Opening of Oxiranes , 2016, Molecules.

[4]  F. Fülöp,et al.  Substrate-dependent fluorinations of highly functionalized cycloalkanes , 2016 .

[5]  F. Fülöp,et al.  Stereo- and Regiocontrolled Syntheses of Exomethylenic Cyclohexane β-Amino Acid Derivatives , 2015, Molecules.

[6]  L. Kiss,et al.  Synthesis of Densely Functionalized Cispentacin Derivatives Through Selective Aziridination and Aziridine Opening Reactions: Orthogonally Protected Di- and Triaminocyclopentanecarboxylates. , 2015 .

[7]  F. Fülöp,et al.  Stereocontrolled One-Step Synthesis of Difunctionalised Cispentacin Derivatives through Ring-Opening Metathesis of Norbornene β-Amino Acids , 2015 .

[8]  I. Mándity,et al.  Continuous-flow solid-phase peptide synthesis: a revolutionary reduction of the amino acid excess. , 2014, ChemSusChem.

[9]  L. Kiss,et al.  A de novo Stereocontrolled Approach to syn- and anti-Disubstituted Acyclic β2,3-Amino Acid Enantiomers. , 2014 .

[10]  F. Fülöp,et al.  A Selective Synthesis of Fluorinated Cispentacin Derivatives , 2014 .

[11]  F. Fülöp,et al.  Stereocontrolled transformation of cyclohexene β-amino esters into syn- or anti-difunctionalized acyclic β2,3-amino acid derivatives , 2014 .

[12]  Hong Liu,et al.  Fluorine in pharmaceutical industry: fluorine-containing drugs introduced to the market in the last decade (2001-2011). , 2014, Chemical reviews.

[13]  F. Fülöp,et al.  Synthesis of carbocyclic and heterocyclic β-aminocarboxylic acids. , 2014, Chemical reviews.

[14]  M. Overhand,et al.  A compendium of cyclic sugar amino acids and their carbocyclic and heterocyclic nitrogen analogues , 2013, Amino Acids.

[15]  F. Fülöp,et al.  Stereoselective Synthesis of Chiral Pyrrolidine Derivatives of (+)-α-Pinene Containing a β-Amino Acid Moiety , 2013 .

[16]  I. Mándity,et al.  Stereocontrolled synthesis of five diastereomers of trimethyl 3-aminocyclopentane-1,2,4-tricarboxylates , 2013 .

[17]  F. Fülöp,et al.  Efficient regio- and stereoselective access to novel fluorinated β-aminocyclohexanecarboxylates , 2013, Beilstein journal of organic chemistry.

[18]  F. Fülöp,et al.  Synthesis of novel functionalized cispentacins through C–C oxidative cleavage of diendo-norbornene β-amino acid , 2013 .

[19]  F. Fülöp,et al.  A new access route to functionalized cispentacins from norbornene β-amino acids. , 2013, Chemistry.

[20]  F. Fülöp,et al.  Selective syntheses of novel highly functionalized β-aminocyclohexanecarboxylic acids , 2012 .

[21]  I. Mándity,et al.  Unique α,β- and α,α,β,β-peptide foldamers based on cis-β-aminocyclopentanecarboxylic acid. , 2012, Angewandte Chemie.

[22]  F. Fülöp,et al.  Synthesis of highly functionalized β-aminocyclopentanecarboxylate stereoisomers by reductive ring opening reaction of isoxazolines , 2012, Beilstein journal of organic chemistry.

[23]  F. Fülöp,et al.  Regio- and diastereoselective fluorination of alicyclic β-amino acids. , 2011, Organic & biomolecular chemistry.

[24]  F. Fülöp,et al.  Selective Synthesis of New Fluorinated Alicyclic β‐Amino Ester Stereoisomers , 2011 .

[25]  A. Bernardi,et al.  2-Azidoethoxy derivatives of 2-aminocyclohexanecarboxylic acids (ACHC): interesting building blocks for the synthesis of cyclic β-peptide conjugates , 2011 .

[26]  F. Fülöp,et al.  Synthesis of novel isoxazoline-fused cyclic β-amino esters by regio- and stereo-selective 1,3-dipolar cycloaddition , 2011 .

[27]  E. Juaristi,et al.  Recent Developments in the Synthesis of β‐Amino Acids , 2010 .

[28]  D. Cole Recent Stereoselective Synthetic Approaches to β‐Amino Acids , 2010 .

[29]  L. Kiss,et al.  Selective Syntheses of Functionalized Cyclic β‐Amino Acids via Transformation of the Ring C—C Double Bonds , 2010 .

[30]  B. Feringa,et al.  Recent advances in the catalytic asymmetric synthesis of β-amino acids , 2010 .

[31]  I. Mándity,et al.  Synthesis of conformationally constrained, orthogonally protected 3-azabicyclo[3.2.1]octane β-amino esters , 2010 .

[32]  F. Fülöp,et al.  Direct Enzymatic Route for the Preparation of Novel Enantiomerically Enriched Hydroxylated β-Amino Ester Stereoisomers , 2010, Molecules.

[33]  F. Fülöp,et al.  Synthesis of conformationally restricted 1,2,3-triazole-substituted ethyl β- and γ-aminocyclopentanecarboxylate stereoisomers. Multifunctionalized alicyclic amino esters , 2010 .

[34]  F. Fülöp,et al.  Synthesis of mono- and dihydroxy-substituted 2-aminocyclooctanecarboxylic acid enantiomers , 2010 .

[35]  B. Sleebs,et al.  Recent Advances in Stereoselective Synthesis and Application of β‐Amino Acids , 2010 .

[36]  F. Fülöp,et al.  Synthesis of orthogonally protected azepane β-amino ester enantiomers , 2010 .

[37]  F. Fülöp,et al.  Synthesis of novel isoxazoline-fused cispentacin stereoisomers , 2009 .

[38]  I. Mándity,et al.  Design of peptidic foldamer helices: a stereochemical patterning approach. , 2009, Angewandte Chemie.

[39]  F. Fülöp,et al.  Novel functionalized cispentacin derivatives. Synthesis of 1,2,3-triazole-substituted 2-aminocyclopentanecarboxylate stereoisomers , 2008 .

[40]  Jean Martínez,et al.  The iodolactone approach to enantiopure oxiranes of constrained chiral cyclic β-amino acids , 2008 .

[41]  F. Fülöp,et al.  Efficient Synthesis of Hydroxy‐Substituted Cispentacin Derivatives , 2008 .

[42]  F. Fülöp,et al.  A new strategy for the preparation of heterocyclic β-amino esters: orthogonally protected β-amino esters with a piperidine skeleton , 2008 .

[43]  D. Ager Synthesis of Non‐Natural Amino Acids , 2007 .

[44]  F. Fülöp,et al.  Diastereo- and Enantioselective Synthesis of Orthogonally Protected 2,4-Diaminocyclopentanecarboxylates: A Flip from β-Amino- to β,γ-Diaminocarboxylates , 2007 .

[45]  Peter H. Seeberger,et al.  Microreactor Synthesis of β‐Peptides , 2006 .

[46]  M. Hollósi,et al.  Effects of the alternating backbone configuration on the secondary structure and self-assembly of beta-peptides. , 2006, Journal of the American Chemical Society.

[47]  A. Dondoni,et al.  Design and Synthesis of New Classes of Heterocyclic C-Glycoconjugates and Carbon-Linked Sugar and Heterocyclic Amino Acids by Asymmetric Multicomponent Reactions (AMCRs) , 2006 .

[48]  I. Dékány,et al.  Secondary structure dependent self-assembly of beta-peptides into nanosized fibrils and membranes. , 2006, Angewandte Chemie.

[49]  S. Gellman,et al.  New Helical Foldamers: Heterogeneous Backbones with 1:2 and 2:1 α:β-Amino Acid Residue Patterns , 2006 .

[50]  F. Fülöp,et al.  Syntheses of Hydroxylated Cyclic β-Amino Acid Derivatives , 2005 .

[51]  E. Juaristi,et al.  Enantioselective Synthesis of β-Amino Acids: Juaristi/Enantioselective 2e , 2005 .

[52]  S. Gellman,et al.  Application of Microwave Irradiation to the Synthesis of 14-Helical β-Peptides , 2005 .

[53]  S. Gellman,et al.  Two Helical Conformations from a Single Foldamer Backbone: “Split Personality” in Short α/β‐Peptides , 2004 .

[54]  A. Córdova The direct catalytic asymmetric mannich reaction. , 2004, Accounts of chemical research.

[55]  Jun‐An Ma Recent Developments in the Catalytic Asymmetric Synthesis of α‐ and β‐Amino Acids , 2003 .

[56]  Jin-seong Park,et al.  Accommodation of α-Substituted Residues in the β-Peptide 12-Helix: Expanding the Range of Substitution Patterns Available to a Foldamer Scaffold , 2003 .

[57]  Mei Fang Liu,et al.  Recent advances in the stereoselective synthesis of β-amino acids , 2002 .

[58]  S. Gellman,et al.  Tolerance of acyclic residues in the beta-peptide 12-helix: access to diverse side-chain arrays for biological applications. , 2002, Journal of the American Chemical Society.

[59]  M. Hollósi,et al.  cis-2-aminocyclopentanecarboxylic acid oligomers adopt a sheetlike structure: switch from helix to nonpolar strand. , 2002, Angewandte Chemie.

[60]  W. DeGrado,et al.  De Novo Design, Synthesis, and Characterization of Antimicrobial β-Peptides , 2001 .

[61]  S. Gellman,et al.  Diversity in short beta-peptide 12-helices: high-resolution structural analysis in aqueous solution of a hexamer containing sulfonylated pyrrolidine residues. , 2001, Journal of the American Chemical Society.

[62]  F. Fülöp,et al.  The chemistry of 2-aminocycloalkanecarboxylic acids. , 2001, Chemical reviews.

[63]  S. Gellman,et al.  Antibiotics: Non-haemolytic β-amino-acid oligomers , 2000, Nature.

[64]  E. Juaristi,et al.  Recent advances in the enantioselective synthesis of beta-amino acids. , 1999, Current medicinal chemistry.

[65]  David J. Ager,et al.  Handbook of Chiral Chemicals , 1999 .

[66]  Douglas R. Powell,et al.  Residue-based control of helix shape in β-peptide oligomers , 1997, Nature.

[67]  Samuel H. Gellman,et al.  β-Peptide Foldamers: Robust Helix Formation in a New Family of β-Amino Acid Oligomers , 1996 .

[68]  D. Seebach,et al.  β‐Peptides: Synthesis by Arndt‐Eistert Homologation with Concomitant Peptide Coupling. Structure Determination by NMR and CD Spectroscopy and by X‐Ray Crystallography. Helical Secondary Structure of a β‐Hexapeptide in Solution and Its Stability Towards Pepsin. , 1996 .

[69]  Ulrich Hommel,et al.  β‐Peptides: Synthesis by Arndt‐Eistert homologation with concomitant peptide coupling. Structure determination by NMR and CD spectroscopy and by X‐ray crystallography. Helical secondary structure of a β‐hexapeptide in solution and its stability towards pepsin , 1996 .

[70]  D. Seebach,et al.  Design, machine synthesis, and NMR-solution structure of a β-heptapeptide forming a salt-bridge stabilised 314-helix in methanol and in water , 2001 .

[71]  D. Seebach,et al.  Preparation of Achiral and of Enantiopure Geminally Disubstituted β‐Amino Acids for β‐Peptide Synthesis , 2000 .

[72]  A. Nussbaum,et al.  BIOLOGICAL AND PHARMACOKINETIC STUDIES WITH BETA -PEPTIDES , 1998 .

[73]  D. Seebach,et al.  THE BIOLOGICAL STABILITY OF BETA -PEPTIDES : NO INTERACTIONS BETWEEN ALPHA- AND BETA -PEPTIDIC STRUCTURES? , 1997 .

[74]  E. Juaristi Enantioselective synthesis of β-amino acids , 1997 .

[75]  C. Tomasini,et al.  Asymmetric synthesis of ß-amino acids and α-substituted β-amino acids , 1996 .