SOAR: A Second-order Arnoldi Method for the Solution of the Quadratic Eigenvalue Problem

We first introduce a second-order Krylov subspace $\mathcal{G}_n$(A,B;u) based on a pair of square matrices A and B and a vector u. The subspace is spanned by a sequence of vectors defined via a second-order linear homogeneous recurrence relation with coefficient matrices A and B and an initial vector u. It generalizes the well-known Krylov subspace $\mathcal{K}_n$(A;v), which is spanned by a sequence of vectors defined via a first-order linear homogeneous recurrence relation with a single coefficient matrix A and an initial vector v. Then we present a second-order Arnoldi (SOAR) procedure for generating an orthonormal basis of $\mathcal{G}_n$(A,B;u). By applying the standard Rayleigh--Ritz orthogonal projection technique, we derive an SOAR method for solving a large-scale quadratic eigenvalue problem (QEP). This method is applied to the QEP directly. Hence it preserves essential structures and properties of the QEP. Numerical examples demonstrate that the SOAR method outperforms convergence behaviors of the Krylov subspace--based Arnoldi method applied to the linearized QEP.

[1]  G. Stewart Matrix Algorithms, Volume II: Eigensystems , 2001 .

[2]  B. Parlett The Symmetric Eigenvalue Problem , 1981 .

[3]  R. D. Slone,et al.  Fast frequency sweep model order reduction of polynomial matrix equations resulting from finite element discretizations , 2002 .

[4]  G. W. Stewart,et al.  Matrix algorithms , 1998 .

[5]  F. A. Raeven A new Arnoldi approach for polynomial eigenproblems , 1996 .

[6]  Z. Bai Krylov subspace techniques for reduced-order modeling of large-scale dynamical systems , 2002 .

[7]  Jack Dongarra,et al.  Templates for the Solution of Algebraic Eigenvalue Problems , 2000, Software, environments, tools.

[8]  Rodney D. Slone,et al.  Broadband model order reduction of polynomial matrix equations using single‐point well‐conditioned asymptotic waveform evaluation: derivations and theory , 2003 .

[9]  Gene H. Golub,et al.  A Subspace Approximation Method for the Quadratic Eigenvalue Problem , 2005, SIAM J. Matrix Anal. Appl..

[10]  D. Sorensen Numerical methods for large eigenvalue problems , 2002, Acta Numerica.

[11]  David S. Watkins Iterative Methods for Linear Systems , 2005 .

[12]  Gene H. Golub,et al.  Matrix computations , 1983 .

[13]  R. Craig,et al.  Model reduction and control of flexible structures using Krylov vectors , 1991 .

[14]  Peter Lancaster,et al.  Lambda-matrices and vibrating systems , 2002 .

[15]  Ricardo G. Durán,et al.  Finite Element Analysis of a Quadratic Eigenvalue Problem Arising in Dissipative Acoustics , 2000, SIAM J. Numer. Anal..

[16]  W. Arnoldi The principle of minimized iterations in the solution of the matrix eigenvalue problem , 1951 .

[17]  Karl Meerbergen,et al.  The Quadratic Eigenvalue Problem , 2001, SIAM Rev..

[18]  D Ramaswamy,et al.  Automatic Generation of Small-Signal Dynamic Macromodels from 3-D Simulation , 2001 .

[19]  Jaroslav Kautsky,et al.  Robust Eigenstructure Assignment in Quadratic Matrix Polynomials: Nonsingular Case , 2001, SIAM J. Matrix Anal. Appl..

[20]  Frann Coise Tisseur Backward Error and Condition of Polynomial Eigenvalue Problems , 1999 .

[21]  H. V. D. Vorst,et al.  Quadratic eigenproblems are no problem , 1996 .

[22]  H. V. D. Vorst,et al.  Jacobi-davidson type methods for generalized eigenproblems and polynomial eigenproblems , 1995 .

[23]  Gene H. Golub,et al.  Matrix computations (3rd ed.) , 1996 .

[24]  Ren-Cang Li,et al.  Krylov type subspace methods for matrix polynomials , 2006 .

[25]  James Demmel,et al.  Applied Numerical Linear Algebra , 1997 .