Piezoelectric field, exciton lifetime, and cathodoluminescence intensity at threading dislocations in GaN{0001}

The strain field of a dislocation emerging at a free surface is partially relaxed to ensure stress free boundary conditions. We show that this relaxation strain at the outcrop of edge threading dislocations in GaN{0001} gives rise to a piezoelectric volume charge. The electric field produced by this charge distribution is strong enough to dissociate free excitons at distances over 100 nm from the dislocation line. We evaluate the impact of this effect on cathodoluminescence images of dislocations.

[1]  K. Sabelfeld,et al.  Dislocation contrast in cathodoluminescence and electron-beam induced current maps on GaN(0 0 0 1) , 2016, 1611.06895.

[2]  E. Yakimov What is the real value of diffusion length in GaN , 2015 .

[3]  C. Fressengeas,et al.  A field theory of piezoelectric media containing dislocations , 2014 .

[4]  A. Tagantsev,et al.  Fundamentals of flexoelectricity in solids , 2013, Nanotechnology.

[5]  D. Vanderbilt,et al.  First-principles theory and calculation of flexoelectricity , 2013, 1307.0132.

[6]  M. Willatzen,et al.  Electromechanical phenomena in semiconductor nanostructures , 2011 .

[7]  E. Yakimov Comment on “Carrier recombination near threading dislocations in GaN epilayers by low voltage cathodoluminescence” [Appl. Phys. Lett. 89, 161905 (2006)] , 2010 .

[8]  R. Maranganti,et al.  Atomistic determination of flexoelectric properties of crystalline dielectrics , 2009, 0903.0684.

[9]  Naoki Yamamoto,et al.  Low temperature diffusion length of excitons in gallium nitride measured by cathodoluminescence technique , 2008 .

[10]  K. Thonke,et al.  Polarization fields of III-nitrides grown in different crystal orientations , 2007, Journal of physics. Condensed matter : an Institute of Physics journal.

[11]  Dominique Drouin,et al.  CASINO V2.42: a fast and easy-to-use modeling tool for scanning electron microscopy and microanalysis users. , 2007, Scanning.

[12]  S. Zaitsev,et al.  EBIC measurements of small diffusion length in semiconductor structures , 2007 .

[13]  V. Alshits,et al.  Chapter 72 Dislocation Fields in Piezoelectrics , 2007 .

[14]  Andrei Schliwa,et al.  Interrelation of structural and electronic properties in InxGa1-xN/GaN quantum dots using an eight-band k · p model , 2006, cond-mat/0610462.

[15]  Dominique Drouin,et al.  Carrier recombination near threading dislocations in GaN epilayers by low voltage cathodoluminescence , 2006 .

[16]  V. Grillo,et al.  Contrast analysis of dislocation images in TEM–cathodoluminescence technique , 2005 .

[17]  A. Authier,et al.  Physical properties of crystals , 2007 .

[18]  A. Usikov,et al.  High-resolution electron-beam-induced-current study of the defect structure in GaN epilayers , 2002 .

[19]  J. Speck The Role of Threading Dislocations in the Physical Properties of GaN and its Alloys , 1999 .

[20]  E. Yu,et al.  Piezoelectric polarization associated with dislocations in wurtzite GaN , 1999 .

[21]  Satoshi Kurai,et al.  Direct Evidence that Dislocations are Non-Radiative Recombination Centers in GaN , 1998 .

[22]  E. C. Carr,et al.  CORRELATION OF CATHODOLUMINESCENCE INHOMOGENEITY WITH MICROSTRUCTURAL DEFECTS IN EPITAXIAL GAN GROWN BY METALORGANIC CHEMICAL-VAPOR DEPOSITION , 1997 .

[23]  Izabella Grzegory,et al.  Elastic constants of gallium nitride , 1996 .

[24]  J. Lothe,et al.  Elastic Strain Fields and Dislocation Mobility , 1992 .

[25]  K. Shintani Screened potential of a charged dislocation in piezoelectric semiconductors , 1991 .

[26]  J. Banavar,et al.  Low-temperature field ionization of localized impurity levels in semiconductors , 1979 .

[27]  T. Yamabe,et al.  Theory of the ionization of the hydrogen atom by an external electrostatic field , 1977 .

[28]  G. Faivre,et al.  Dislocations in Piezoelectric Semiconductors , 1972 .

[29]  L. Merten Abgeschirmte piezoelektrische Potentiale um Versetzungen in piezoelektrischen Kristallen , 1966 .

[30]  E. Yoffe A dislocation at a free surface , 1961 .