Stopping and scattering of relativistic electron beams in dense plasmas and requirements for fast ignition

The interaction of a relativistic electron with a dense plasma is studied in the context of inertial fusion fast ignition. Expressions for the electron stopping power and deflection are given and implemented in a three-dimensional (3D) Monte Carlo code. Electron range and penetration depth are computed as functions of the electron energy and plasma parameters; approximate expressions are also proposed. Conditions for fast ignition are studied by including the 3D Monte Carlo code in a 2D hydrodynamic code. The required beam energy is determined as a function of mean electron energy for monoenergetic and exponential energy distributions and a uniform initial deuterium?tritium plasma with a density of 300?g?cm?3. A simple model is shown to agree with the code.

[1]  N. Mott The Scattering of Fast Electrons by Atomic Nuclei , 1929 .

[2]  C. Møller Zur Theorie des Durchgangs schneller Elektronen durch Materie , 1932 .

[3]  H. W. Lewis Multiple Scattering in an Infinite Medium , 1950 .

[4]  D. Pines A Collective Description of Electron Interactions: II. Collective vs Individual Particle Aspects of the Interactions , 1952 .

[5]  J. W. Motz,et al.  Electron Scattering without Atomic or Nuclear Excitation , 1964 .

[6]  Gregory A. Moses,et al.  Inertial confinement fusion , 1982 .

[7]  Michael D. Perry,et al.  Ignition and high gain with ultrapowerful lasers , 1994 .

[8]  M. Murakami,et al.  The Interaction Physics of the Fast Ignitor Concept , 1996, Physical review letters.

[9]  Stefano Atzeni,et al.  Inertial fusion fast ignitor: Igniting pulse parameter window vs the penetration depth of the heating particles and the density of the precompressed fuel , 1999 .

[10]  M. Murakami,et al.  Erratum: Interaction Physics of the Fast Ignitor Concept [Phys. Rev. Lett. 77, 2483 (1996)] , 2000 .

[11]  J. Meyer-ter-Vehn,et al.  The physics of inertial fusion - Hydrodynamics, dense plasma physics, beam-plasma interaction , 2004 .

[12]  D. Del Sarto,et al.  Fluid and kinetic simulation of inertial confinement fusion plasmas , 2005, Comput. Phys. Commun..

[13]  P. B. Radha,et al.  Hydrodynamic simulations of integrated experiments planned for the OMEGA/OMEGA EP laser systems , 2005 .

[14]  Stefano Atzeni,et al.  Overview of ignition conditions and gain curves for the fast ignitor , 2005 .

[15]  K. Tanaka,et al.  Fast Ignition Inertial Fusion: An Introduction and Preview , 2006 .

[16]  Mike Dunne,et al.  A high-power laser fusion facility for Europe , 2006 .

[17]  Richard D. Petrasso,et al.  Energy deposition of MeV electrons in compressed targets of fast-ignition inertial confinement fusion , 2006 .

[18]  Stefano Atzeni,et al.  Fast Ignition: Overview and Background , 2006 .

[19]  J. Meyer-ter-Vehn,et al.  Three-dimensional fast electron transport for ignition-scale inertial fusion capsules , 2006, physics/0605249.

[20]  R. Betti,et al.  Gain curves and hydrodynamic simulations of ignition and burn for direct-drive fast-ignition fusion targets , 2007 .

[21]  Michael H. Key,et al.  Status of and prospects for the fast ignition inertial fusion concepta) , 2007 .

[22]  Stefano Atzeni,et al.  Targets for direct-drive fast ignition at total laser energy of 200-400 kJ , 2007 .

[23]  Yasuhiko Sentoku,et al.  Intensity scaling of hot electron energy coupling in cone-guided fast ignition , 2008 .

[24]  Guy Schurtz,et al.  Fast ignitor target studies for the HiPER project , 2008 .

[25]  R. Betti,et al.  Stopping power and range of energetic electrons in dense plasmas of fast-ignition fusion targets , 2008 .

[26]  J. Meyer-ter-Vehn,et al.  Ignition of pre-compressed fusion targets by fast electrons , 2008 .