Using Block Norms in Bicriteria Optimization

We propose to use block norms to generate nondominated solutions of multiple criteria programs and introduce the new concept of the oblique norm that is specially tailored to handle general problems. We show the applicability of oblique norms to deal with discrete or convex bicriteria programs and also discuss implications of using block norms in multiple criteria decision making.

[1]  Andrzej P. Wierzbicki,et al.  The Use of Reference Objectives in Multiobjective Optimization , 1979 .

[2]  J. Hiriart-Urruty,et al.  Convex analysis and minimization algorithms , 1993 .

[3]  Lucien Duckstein,et al.  Composite Programming as an Extension of Compromise Programming , 1985 .

[4]  James E. Ward,et al.  Using Block Norms for Location Modeling , 1985, Oper. Res..

[5]  Francisco Ruiz,et al.  Advances in Multiple Objective and Goal Programming , 1997 .

[6]  Eduardo Conde,et al.  Closest Solutions in Ideal-Point Methods , 1997 .

[7]  A. M. Geoffrion Proper efficiency and the theory of vector maximization , 1968 .

[8]  R. S. Laundy,et al.  Multiple Criteria Optimisation: Theory, Computation and Application , 1989 .

[9]  Hirokazu Miura,et al.  A flexible formulation for multi-objective design problems , 1996 .

[10]  Ignacy Kaliszewski,et al.  A modified weighted tchebycheff metric for multiple objective programming , 1987, Comput. Oper. Res..

[11]  C. Romero,et al.  Multiple Criteria Decision Making and its Applications to Economic Problems , 1998 .

[12]  P. Yu A Class of Solutions for Group Decision Problems , 1973 .

[13]  Ralph E. Steuer,et al.  An interactive weighted Tchebycheff procedure for multiple objective programming , 1983, Math. Program..

[14]  Mark Gershon,et al.  Techniques for multiobjective decision making in systems management , 1986 .

[15]  Ralph E. Steuer,et al.  A multi-period, multiple criteria optimization system for manpower planning☆ , 1988 .

[16]  P. Serafini Mathematics of multi objective optimization , 1985 .

[17]  W. B. Gearhart Compromise solutions and estimation of the noninferior set , 1979 .

[18]  F. L. Bauer,et al.  Absolute and monotonic norms , 1961 .