High-energy high-luminosity e+e− collider using energy-recovery linacs

In this paper we present alternative approach for Future Circular electron-positron Collider. Current 100 km circumference design with the top CM energy of 365 GeV (182.5 GeV beam energy) is based on two storage rings to circulate colliding beams. One of the ring-ring design shortcomings is enormous power consumption needed to compensate for 100 MW of the beam energy losses for synchrotron radiation. We propose to use energy recovery linac located in the same tunnel to mitigate this drawback. We show in this paper that our approach would allow a significant, up to an order of magnitude, reduction of the beam energy losses while maintaining high luminosity in this collider at high energies. Furthermore, our approach would allow to extend CM energy to 500 GeV (or above), which is sufficient for double Higgs production.

[1]  Ohmi Simulation of beam-beam effects in a circular e(+)e(-) collider , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[2]  Oliver Brüning,et al.  Challenges And Goals For Accelerators In The Xxi Century , 2016 .

[3]  M. Vos,et al.  The electro-weak couplings of the top and bottom quarks — Global fit and future prospects , 2019, Journal of High Energy Physics.

[4]  U. Wienands,et al.  Design of beam optics for the Future Circular Collider $e^+e^-$-collider rings , 2016, 1610.07170.

[5]  G. White,et al.  Stability, reheating, and leptogenesis , 2019, Journal of High Energy Physics.

[6]  E. Wang,et al.  eRHIC Design Study: An Electron-Ion Collider at BNL , 2014 .

[7]  E. Levichev,et al.  INTERACTION REGION LATTICE FOR FCC-EE (TLEP) , 2014 .

[8]  E. Courant,et al.  Theory of the Alternating-Gradient Synchrotron , 1958 .

[10]  M. D'Onofrio,et al.  Physics Briefing Book , 2019 .

[11]  M. Stanitzki,et al.  The International Linear Collider Technical Design Report - Volume 1: Executive Summary , 2013 .

[12]  D. Schulte,et al.  Beam-Beam Effects in Linear Colliders , 2017 .

[13]  K. Ohmi,et al.  FCC-ee/CepC BEAM-BEAM SIMULATIONS WITH BEAMSTRAHLUNG ∗ , 2014 .

[14]  W. Y. Chan,et al.  Study of the rare decays of B0 and B 0 mesons into muon pairs using data collected during 2015 and 2016 with the ATLAS detector , 2019 .

[15]  V. M. Ghete,et al.  Combined measurements of Higgs boson couplings in proton–proton collisions at \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{doc , 2018, The European Physical Journal. C, Particles and Fields.

[16]  Nicola De Filippis,et al.  FCC-hh: The Hadron Collider , 2019, The European Physical Journal Special Topics.

[17]  Gerald Eigen,et al.  The International Linear Collider. A Global Project , 2019, 1901.09829.

[18]  Nicola De Filippis,et al.  CEPC Conceptual Design Report: Volume 2 - Physics & Detector , 2018 .

[19]  I. Syratchev,et al.  Updated baseline for a staged Compact Linear Collider , 2016, 1608.07537.

[20]  MATTHEW SANDS,et al.  PHYSICS OF ELECTRON STORAGE RINGS. AN INTRODUCTION. , 2018 .

[21]  M. Tiefenback,et al.  CEBAF Accelerator Achievements , 2011 .

[22]  J. Seeman Observations of the Beam-beam Interaction , 1986 .

[23]  J. T. Childers,et al.  FCC-ee: The Lepton Collider , 2019, The European Physical Journal Special Topics.

[24]  D. Schulte,et al.  Challenges for Highest Energy Circular Colliders , 2014 .

[25]  Jorg Wenninger,et al.  Accelerator Physics at LEP , 2000 .