On the use of spectral discretizations with time strong stability preserving properties to Dirichlet pseudo-parabolic problems

This paper is concerned with the approximation of linear and nonlinearinitial-boundary-value problems of pseudo-parabolic equations with Dirichlet boundary conditions. They are discretized in space by spectral Galerkin and collocation methods based on Legendre and Chebyshev polynomials. The time integration is carried out suitably with robust schemes attending to qualitative features such as stiffness and preservation of strong stability to simulate nonregular problems more correctly. The corresponding semidiscrete and fully discrete schemes are described and the performance of the methods is analyzed computationally.

[1]  Florian Doster,et al.  Nonmonotone Saturation Profiles for Hydrostatic Equilibrium in Homogeneous Porous Media , 2012 .

[2]  Roberto Natalini,et al.  Numerical algorithms for simulations of a traffic model on road networks , 2007 .

[3]  M. Gurtin,et al.  On a theory of heat conduction involving two temperatures , 1968 .

[4]  Alfio Quarteroni,et al.  Fourier spectral methods for pseudo-parabolic equations , 1987 .

[5]  E. A. Milne The Diffusion of Imprisoned Radiation Through a Gas , 1926 .

[6]  Chi-Wang Shu,et al.  High Order Strong Stability Preserving Time Discretizations , 2009, J. Sci. Comput..

[7]  Akbar Barati Chiyaneh,et al.  On adaptive mesh for the initial boundary value singularly perturbed delay Sobolev problems , 2019, Numerical Methods for Partial Differential Equations.

[8]  Carlota M. Cuesta,et al.  Numerical schemes for a pseudo-parabolic Burgers equation : discontinuous data and long-time behaviour , 2009 .

[9]  Gabil M. Amiraliyev,et al.  High-order finite difference technique for delay pseudo-parabolic equations , 2017, J. Comput. Appl. Math..

[10]  Jim Douglas,et al.  Superconvergence of a finite element approximation to the solution of a Sobolev equation in a single space variable , 1981 .

[11]  David Colton,et al.  Pseudoparabolic equations in one space variable , 1972 .

[12]  D. Gottlieb,et al.  Numerical analysis of spectral methods : theory and applications , 1977 .

[13]  Gabriele Steidl,et al.  Numerical Fourier Analysis , 2019, Fundamentals of Numerical Mathematics for Physicists and Engineers.

[14]  Iuliu Sorin Pop,et al.  A New Class of Entropy Solutions of the Buckley-Leverett Equation , 2007, SIAM J. Math. Anal..

[15]  G. I. Barenblatt,et al.  Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks [strata] , 1960 .

[16]  T. Holstein Imprisonment of Resonance Radiation in Gases , 1947 .

[17]  William H. Ford,et al.  Stability and Convergence of Difference Approximations to Pseudo-Parabolic Partial Differential Equations , 1973 .

[18]  P. Vabishchevich,et al.  Splitting schemes for pseudoparabolic equations , 2013 .

[19]  Richard E. Ewing,et al.  Numerical Solution of Sobolev Partial Differential Equations , 1975 .

[20]  G. Perla Menzala,et al.  Existence and Uniqueness for Periodic Solutions of the Benjamin–Bona–Mahony Equation , 1977 .

[21]  Rakesh Kumar,et al.  B-spline quasi-interpolation based numerical methods for some Sobolev type equations , 2016, J. Comput. Appl. Math..

[22]  Guy Vallet,et al.  Existence results for nonlinear pseudoparabolic problems , 2011 .

[23]  Stephan Luckhaus,et al.  Flow of Oil and Water in a Porous Medium , 1984 .

[24]  Yun Fan,et al.  Equivalent formulations and numerical schemes for a class of pseudo-parabolic equations , 2013, J. Comput. Appl. Math..

[25]  Ralph E. Showalter,et al.  Pseudoparabolic Partial Differential Equations , 1970 .

[26]  Min Yang,et al.  Analysis of second order finite volume element methods for pseudo-parabolic equations in three spatial dimensions , 2008, Appl. Math. Comput..

[27]  William H. Ford,et al.  Uniform Error Estimates for Difference Approximations to NonLinear Pseudo-Parabolic Partial Differential Equations , 1974 .

[28]  Sigal Gottlieb,et al.  Spectral Methods , 2019, Numerical Methods for Diffusion Phenomena in Building Physics.

[29]  Homogenization of a pseudoparabolic system , 2009 .

[30]  T. A. Zang,et al.  Spectral methods for fluid dynamics , 1987 .

[31]  R. Showalter Sobolev equations for nonlinear dispersive systems , 1978 .

[32]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[33]  Iuliu Sorin Pop,et al.  Travelling wave solutions for degenerate pseudo-parabolic equation modelling two-phase flow in porous media , 2013 .

[35]  J. Bona,et al.  Model equations for long waves in nonlinear dispersive systems , 1972, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[36]  R. Hilfer,et al.  Saturation overshoot and hysteresis for twophase flow in porous media , 2014, The European Physical Journal Special Topics.

[37]  Hongwei Yang,et al.  Finite Element Method of BBM-Burgers Equation with Dissipative Term Based on Adaptive Moving Mesh , 2017 .

[38]  Eduardo Abreu,et al.  Numerical modelling of three-phase immiscible flow in heterogeneous porous media with gravitational effects , 2014, Math. Comput. Simul..

[39]  Andro Mikelic,et al.  Analysis of Model Equations for Stress-Enhanced Diffusion in Coal Layers. Part I: Existence of a Weak Solution , 2008, SIAM J. Math. Anal..

[40]  Chi-Wang Shu,et al.  Strong Stability-Preserving High-Order Time Discretization Methods , 2001, SIAM Rev..

[41]  Iuliu Sorin Pop,et al.  A class of pseudo‐parabolic equations: existence, uniqueness of weak solutions, and error estimates for the Euler‐implicit discretization , 2011 .

[42]  O. Iliev,et al.  A two-dimensional model of the pressing section of a paper machine including dynamic capillary effects , 2013 .

[43]  Sigal Gottlieb,et al.  On High Order Strong Stability Preserving Runge–Kutta and Multi Step Time Discretizations , 2005, J. Sci. Comput..

[44]  M. N. Spijker,et al.  Strong stability of singly-diagonally-implicit Runge--Kutta methods , 2008 .

[45]  Andro Mikelić,et al.  A global existence result for the equations describing unsaturated flow in porous med , 2010 .

[46]  J. Mikyška,et al.  Numerical investigation of dynamic capillary pressure in two-phase flow in porous medium , 2011 .

[47]  Sirajul Haq,et al.  Meshless RBFs method for numerical solutions of two-dimensional high order fractional Sobolev equations , 2020, Comput. Math. Appl..

[48]  Karline Soetaert,et al.  Solving Ordinary Differential Equations in R , 2012 .

[49]  Amy Novick-Cohen,et al.  Stable patterns in a viscous diffusion equation , 1991 .

[50]  Tsuan Wu Ting,et al.  Certain non-steady flows of second-order fluids , 1963 .

[51]  Jie Shen,et al.  Efficient Spectral-Galerkin Method I. Direct Solvers of Second- and Fourth-Order Equations Using Legendre Polynomials , 1994, SIAM J. Sci. Comput..

[52]  Wenjie Gao,et al.  Weak solutions for a high-order pseudo-parabolic equation with variable exponents1 , 2014 .

[53]  Hong Zhang,et al.  A Numerical Study of Two-Phase Flow Models with Dynamic Capillary Pressure and Hysteresis , 2016, Transport in Porous Media.

[54]  David Levin,et al.  Practical extrapolation methods: theory and applications , 2005, Math. Comput..

[55]  Zhangxin Chen Degenerate Two-Phase Incompressible Flow: I. Existence, Uniqueness and Regularity of a Weak Solution , 2001 .

[56]  Josephus Hulshof,et al.  A model problem for groundwater flow with dynamic capillary pressure: stability of travelling waves , 2003 .

[57]  Christine Bernardi,et al.  Properties of some weighted Sobolev spaces and application to spectral approximations , 1989 .

[58]  Claudio Canuto,et al.  Spectral and pseudo-spectral methods for parabolic problems with non periodic boundary conditions , 1981 .

[59]  B. Mercier,et al.  An introduction to the numerical analysis of spectral methods , 1989 .

[60]  A. Quarteroni,et al.  Approximation results for orthogonal polynomials in Sobolev spaces , 1982 .

[61]  Stefan Karpinski,et al.  Analysis of a linearization scheme for an interior penalty discontinuous Galerkin method for two‐phase flow in porous media with dynamic capillarity effects , 2017 .

[62]  William G. Gray,et al.  Thermodynamic basis of capillary pressure in porous media , 1993 .

[63]  Iuliu Sorin Pop,et al.  Uniqueness of weak solutions for a pseudo-parabolic equation modeling two phase flow in porous media , 2015, Appl. Math. Lett..

[64]  Colin B. Macdonald,et al.  Optimal implicit strong stability preserving Runge--Kutta methods , 2009 .

[65]  ShenJie Efficient spectral-Galerkin method I , 1994 .

[66]  E. Richard,et al.  TIME-STEPPING GALERKIN METHODS FOR NONLINEAR SOBOLEV PARTIAL DIFFERENTIAL EQUATIONS* , 1978 .

[67]  Danping Yang,et al.  The Finite Difference Streamline Diffusion Methods for Sobolev Equations with Convection-Dominated Term , 2001, Appl. Math. Comput..

[68]  Eduardo Abreu,et al.  Computing numerical solutions of the pseudo-parabolic Buckley-Leverett equation with dynamic capillary pressure , 2017, Math. Comput. Simul..

[69]  C. Rohde,et al.  Existence of weak solutions for a nonlocal pseudo-parabolic model for Brinkman two-phase flow in asymptotically flat porous media , 2018, Journal of Mathematical Analysis and Applications.