Balancing Graph Voronoi Diagrams

Many facility location problems are concerned with minimizing operation and transportation costs by partitioning territory into regions of similar size, each of which is served by a facility. For many optimization problems, the overall cost can be reduced by means ofa partitioning into balanced subsets, especially in those cases where the cost associated with a subset is superlinear in its size.In this paper, we consider the problem of generating a Voronoi partition of a discrete graph so as to achieve balance conditions on the region sizes.Through experimentation, we first establishthat the region sizes of randomly-generated graph Voronoi diagrams vary greatly in practice. We then show how to achieve a balanced partition of a graph via Voronoi site resampling. For bounded-degree graphs, where each of the $n$ nodes has degree at most $d$, and for an initial randomly-chosen set of $s$ Voronoi nodes,we prove that, by extending the set of Voronoi nodes using an algorithm by Thorup and Zwick, each Voronoi region has size at most $4dn/s+1$ nodes, and that the expected size of the extended set of Voronoi nodes is at most $2s\log n$.

[1]  Kurt Mehlhorn,et al.  A Faster Approximation Algorithm for the Steiner Problem in Graphs , 1988, Inf. Process. Lett..

[2]  Kamesh Munagala,et al.  Local Search Heuristics for k-Median and Facility Location Problems , 2004, SIAM J. Comput..

[3]  Zoya Svitkina,et al.  Lower-bounded facility location , 2008, SODA '08.

[4]  M. Tanemura Statistical Distributions of Poisson Voronoi Cells in Two and Three Dimensions , 2003 .

[5]  Ibrahim Matta,et al.  BRITE: an approach to universal topology generation , 2001, MASCOTS 2001, Proceedings Ninth International Symposium on Modeling, Analysis and Simulation of Computer and Telecommunication Systems.

[6]  Christoph Dürr,et al.  Nash Equilibria in Voronoi Games on Graphs , 2007, ESA.

[7]  Ioannis Xenarios,et al.  DIP: the Database of Interacting Proteins , 2000, Nucleic Acids Res..

[8]  Stefan Nickel,et al.  Towards a unified territorial design approach — Applications, algorithms and GIS integration , 2005 .

[9]  Zhou Xiao,et al.  Partitioning a Weighted Tree to Subtrees of Almost Uniform Size , 2008 .

[10]  Lutz Muche,et al.  Second‐order properties of the point process of nodes in a stationary Voronoi tessellation , 2008 .

[11]  H. J. Hilhorsta Statistical properties of planar Voronoi tessellations , 2008 .

[12]  Albert,et al.  Emergence of scaling in random networks , 1999, Science.

[13]  Gilbert Laporte,et al.  A tabu search heuristic and adaptive memory procedure for political districting , 2003, Eur. J. Oper. Res..

[14]  Takehiro Ito,et al.  Partitioning a graph of bounded tree-width to connected subgraphs of almost uniform size , 2006, J. Discrete Algorithms.

[15]  D. F. Watson,et al.  Radial generation of n-dimensional poisson processes , 1984, Journal of Applied Probability.

[16]  Sidney W. Hess,et al.  Experiences with a Sales Districting Model: Criteria and Implementation , 1971 .

[17]  Yehoshua Perl,et al.  Most Uniform Path Partitioning and its Use in Image Processing , 1993, Discret. Appl. Math..

[18]  H. J. Hilhorst Statistical properties of planar Voronoi tessellations , 2007 .

[19]  Kamesh Munagala,et al.  Local search heuristic for k-median and facility location problems , 2001, STOC '01.

[20]  Michael Ley,et al.  The DBLP Computer Science Bibliography: Evolution, Research Issues, Perspectives , 2002, SPIRE.

[21]  Luc Muyldermans,et al.  Districting for salt spreading operations , 2002, Eur. J. Oper. Res..

[22]  Kenneth A. Brakke,et al.  Random Voronoi Tessellations in Arbitrary Dimension , 2005 .

[23]  J. Møller Random tessellations in ℝ d , 1989, Advances in Applied Probability.

[24]  Mehran Hojati,et al.  Optimal political districting , 1996, Comput. Oper. Res..

[25]  BERNARD M. WAXMAN,et al.  Routing of multipoint connections , 1988, IEEE J. Sel. Areas Commun..

[26]  Joseph Mecke,et al.  The Poisson Voronoi Tessellation I. A Basic Identity , 1995 .

[27]  E. Gilbert Random Subdivisions of Space into Crystals , 1962 .

[28]  Shinichi Honiden,et al.  Approximate Shortest Path Queries in Graphs Using Voronoi Duals , 2009, 2009 Sixth International Symposium on Voronoi Diagrams.

[29]  H. Hilhorst,et al.  Planar Voronoi cells: the violation of Aboav's law explained , 2006, cond-mat/0605136.

[30]  Felipe Caro,et al.  School redistricting: embedding GIS tools with integer programming , 2004, J. Oper. Res. Soc..

[31]  Mikkel Thorup,et al.  Compact routing schemes , 2001, SPAA '01.

[32]  Michael Mitzenmacher,et al.  A Brief History of Generative Models for Power Law and Lognormal Distributions , 2004, Internet Math..

[33]  Andreas Drexl,et al.  Fast Approximation Methods for Sales Force Deployment , 1999 .

[34]  R. E. Miles The Random Division of Space , 1972 .

[35]  M. E. J. Newman,et al.  Power laws, Pareto distributions and Zipf's law , 2005 .

[36]  Takehiro Ito,et al.  Partitioning a Multi-weighted Graph to Connected Subgraphs of Almost Uniform Size , 2006, COCOON.

[37]  Ioannis Xenarios,et al.  DIP, the Database of Interacting Proteins: a research tool for studying cellular networks of protein interactions , 2002, Nucleic Acids Res..

[38]  G. Gallego,et al.  How to avoid stockouts when producing several items on a single facility? What to do if you can't? , 1996, Computers & Operations Research.

[39]  Lutz Muche The Poisson Voronoi Tessellation II. Edge Length Distribution Functions , 1996 .

[40]  Kenneth A. Brakke,et al.  Statistics of Three Dimensional Random Voronoi Tessellations , 2005 .

[41]  Mark E. J. Newman,et al.  Power-Law Distributions in Empirical Data , 2007, SIAM Rev..

[42]  Sergei Zuyev,et al.  Random Laguerre tessellations , 2008, Advances in Applied Probability.

[43]  G. Nemhauser,et al.  Exceptional Paper—Location of Bank Accounts to Optimize Float: An Analytic Study of Exact and Approximate Algorithms , 1977 .

[44]  H. J. Hilhorst New Monte Carlo method for planar Poisson–Voronoi cells , 2006 .

[45]  Lutz Muche,et al.  The Poisson Voronoi Tessellation III. Miles' Formula , 1998 .

[46]  M. Erwig The graph Voronoi diagram with applications , 2000 .

[47]  Richard Cowan,et al.  A more comprehensive complementary theorem for the analysis of Poisson point processes , 2006, Advances in Applied Probability.

[48]  Andrew S. Tanenbaum,et al.  Operating systems: design and implementation , 1987, Prentice-Hall software series.

[49]  Richard Cowan,et al.  Properties of ergodic random mosaic processes , 1980 .

[50]  P. N. Rathie On the volume distribution of the typical Poisson–Delaunay cell , 1992, Journal of Applied Probability.

[51]  Michael Ian Shamos,et al.  Geometric complexity , 1975, STOC.

[52]  Andrew V. Goldberg,et al.  Implementation Challenge for Shortest Paths , 2008, Encyclopedia of Algorithms.

[53]  Naveen Garg,et al.  Improved approximation for universal facility location , 2005, SODA '05.

[54]  Peter Sanders,et al.  Combining hierarchical and goal-directed speed-up techniques for dijkstra's algorithm , 2008, JEAL.

[55]  Karen Aardal,et al.  A 3-Approximation Algorithm for the k-Level Uncapacitated Facility Location Problem , 1999, Inf. Process. Lett..

[56]  Mike Tyers,et al.  BioGRID: a general repository for interaction datasets , 2005, Nucleic Acids Res..

[57]  George L. Nemhauser,et al.  Note--On "Location of Bank Accounts to Optimize Float: An Analytic Study of Exact and Approximate Algorithms" , 1979 .

[58]  Kenneth A. Brakke,et al.  Statistics of Random Plane Voronoi Tessellations , 2006 .

[59]  Pierre Calka,et al.  Precise formulae for the distributions of the principal geometric characteristics of the typical cells of a two-dimensional Poisson-Voronoi tessellation and a Poisson line process , 2003, Advances in Applied Probability.

[60]  Daniel Delling,et al.  SHARC: Fast and robust unidirectional routing , 2008, JEAL.