Silk inverse opals

Researchers bring together silk and photonic crystals and report the manufacturing of robust, freestanding, three-dimensional photonic crystals with different lattice constants in the structural form of an inverse opal entirely composed of silk fibroin. These silk-based inverse opals add a new dimension at the interface of nanophotonics and biological applications.

[1]  David L. Kaplan,et al.  New Opportunities for an Ancient Material , 2010, Science.

[2]  A. Collins,et al.  Silk inverse opals from template-directed β-sheet transformation of regenerated silk fibroin. , 2007, Soft matter.

[3]  E. Yablonovitch,et al.  Inhibited spontaneous emission in solid-state physics and electronics. , 1987, Physical review letters.

[4]  David L. Kaplan,et al.  Biocompatible Silk Printed Optical Waveguides , 2009 .

[5]  Yi Wang,et al.  Gold-Nanoparticle-Infiltrated Polystyrene Inverse Opals: A Three-Dimensional Platform for Generating Combined Optical Properties , 2006 .

[6]  Paras N. Prasad,et al.  Introduction to Biophotonics , 2003 .

[7]  L. Liz‐Marzán,et al.  Interplay of Resonant Cavity Modes with Localized Surface Plasmons: Optical Absorption Properties of Bragg Stacks Integrating Gold Nanoparticles , 2011, Advanced materials.

[8]  M. Demura,et al.  Immobilization of peroxidase with a Bombyx mori silk fibroin membrane and its application to biophotosensors , 1989 .

[9]  Mark Cronin-Golomb,et al.  Bioactive silk protein biomaterial systems for optical devices. , 2008, Biomacromolecules.

[10]  Watson,et al.  Photonic band structure of fcc colloidal crystals. , 1996, Physical review letters.

[11]  Xiaohua Huang,et al.  Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine. , 2008, Accounts of chemical research.

[12]  Naomi J Halas,et al.  Nanoshell-enabled photothermal cancer therapy: impending clinical impact. , 2008, Accounts of chemical research.

[13]  Younan Xia,et al.  Monodispersed Colloidal Spheres: Old Materials with New Applications , 2000 .

[14]  Seung‐Man Yang,et al.  Self-assembled colloidal structures for photonics , 2011 .

[15]  Thomas Scheibel,et al.  Silk‐based materials for biomedical applications , 2010, Biotechnology and applied biochemistry.

[16]  Buddy D. Ratner,et al.  Biomaterials Science: An Introduction to Materials in Medicine , 1996 .

[17]  P. Alivisatos The use of nanocrystals in biological detection , 2004, Nature Biotechnology.

[18]  David L. Kaplan,et al.  Nano‐ and Micropatterning of Optically Transparent, Mechanically Robust, Biocompatible Silk Fibroin Films , 2008 .

[19]  Sunghwan Kim,et al.  Fiber-coupled surface-emitting photonic crystal band edge laser for biochemical sensor applications , 2009 .

[20]  Zhenpeng Qin,et al.  Thermophysical and biological responses of gold nanoparticle laser heating. , 2012, Chemical Society reviews.

[21]  David L. Kaplan,et al.  A new route for silk , 2008 .

[22]  Simon Breslav,et al.  Towards the Photonic Nose: A Novel Platform for Molecule and Bacteria Identification , 2010, Advanced materials.

[23]  Ming Lin,et al.  Polymerized crystalline colloidal array chemical-sensing materials for detection of lead in body fluids , 2002, Analytical and bioanalytical chemistry.

[24]  D. Kaplan,et al.  Bioactive "self-sensing" optical systems. , 2009, Applied physics letters.

[25]  Heather K Hunt,et al.  Label-free biological and chemical sensors. , 2010, Nanoscale.

[26]  Thomas Scheibel,et al.  Spider silks: recombinant synthesis, assembly, spinning, and engineering of synthetic proteins , 2004, Microbial cell factories.

[27]  Implantable photonic crystal for reflection-based optical sensing of biodegradation , 2008 .

[28]  Vos,et al.  Preparation of photonic crystals made of air spheres in titania , 1998, Science.