Fifty years in studying carbon-based materials

A review is presented based on our 50 year involvement in studying carbon materials physics and carbon-based nanostructures. The review topics include an early history of studies of graphene and graphite, graphite intercalation compounds, forerunners of nano-carbons, fullerenes, carbon nanotubes and, finally, graphene and graphene nanoribbons.

[1]  G. Abrosimova Evolution of the structure of amorphous alloys , 2011 .

[2]  Riichiro Saito,et al.  Raman spectroscopy of graphene and carbon nanotubes , 2011 .

[3]  Ado Jorio,et al.  Raman Spectroscopy in Graphene Related Systems , 2011 .

[4]  M. Dresselhaus,et al.  Raman Spectroscopy in Graphene Related Systems: JORIO:RAMAN O-BK , 2011 .

[5]  P. Eklund,et al.  Charge transfer and weak chemisorption of oxygen molecules in nanoporous carbon consisting of a disordered network of nanographene sheets , 2010, Journal of physics. Condensed matter : an Institute of Physics journal.

[6]  M. Dresselhaus,et al.  Wall-to-wall stress induced in (6,5) semiconducting nanotubes by encapsulation in metallic outer tubes of different diameters: a resonance Raman study of individual C60-derived double-wall carbon nanotubes. , 2010, Nanoscale.

[7]  Jin Sung Park,et al.  Raman and fluorescence spectroscopic studies of a DNA-dispersed double-walled carbon nanotube solution. , 2010, ACS nano.

[8]  M. Dresselhaus,et al.  Raman spectroscopy in graphene , 2009 .

[9]  A. Reina,et al.  Controlled Formation of Sharp Zigzag and Armchair Edges in Graphitic Nanoribbons , 2009, Science.

[10]  D. Nezich,et al.  Raman spectroscopy study of isolated double-walled carbon nanotubes with different metallic and semiconducting configurations. , 2008, Nano letters.

[11]  Ado Jorio,et al.  Carbon Nanotubes: Advanced Topics in the Synthesis, Structure, Properties and Applications , 2007 .

[12]  S. Louie,et al.  Energy gaps in graphene nanoribbons. , 2006, Physical review letters.

[13]  Andre K. Geim,et al.  Raman spectrum of graphene and graphene layers. , 2006, Physical review letters.

[14]  M. Dresselhaus,et al.  Nanotube coalescence-inducing mode: a novel vibrational mode in carbon systems. , 2006, Small.

[15]  Riichiro Saito,et al.  Raman spectroscopy of carbon nanotubes , 2005 .

[16]  A. Jorio,et al.  Influence of the atomic structure on the Raman spectra of graphite edges. , 2004, Physical review letters.

[17]  Andre K. Geim,et al.  Electric Field Effect in Atomically Thin Carbon Films , 2004, Science.

[18]  G. Medeiros-Ribeiro,et al.  Anisotropy of the Raman spectra of nanographite ribbons. , 2004, Physical review letters.

[19]  M. Dresselhaus,et al.  The concept of cutting lines in carbon nanotube science. , 2003, Journal of nanoscience and nanotechnology.

[20]  Charles M. Lieber,et al.  Structural ( n, m) determination of isolated single-wall carbon nanotubes by resonant Raman scattering. , 2001, Physical review letters.

[21]  Thomsen,et al.  Double resonant raman scattering in graphite , 2000, Physical review letters.

[22]  M. Dresselhaus,et al.  Surface-enhanced and normal stokes and anti-stokes Raman spectroscopy of single-walled carbon nanotubes. , 2000, Physical review letters.

[23]  A. M. Rao,et al.  Raman Scattering Study of Coalesced Single Walled Carbon Nanotubes , 1998 .

[24]  A. Rinzler,et al.  Electronic structure of atomically resolved carbon nanotubes , 1998, Nature.

[25]  C. Lieber,et al.  Atomic structure and electronic properties of single-walled carbon nanotubes , 1998, Nature.

[26]  A. M. Rao,et al.  Diameter-Selective Raman Scattering from Vibrational Modes in Carbon Nanotubes , 1997, Science.

[27]  Fujita,et al.  Edge state in graphene ribbons: Nanometer size effect and edge shape dependence. , 1996, Physical review. B, Condensed matter.

[28]  M. S. Dresselhaus,et al.  Raman scattering from nanoscale carbons generated in a cobalt-catalyzed carbon plasma , 1994 .

[29]  T. Ichihashi,et al.  Single-shell carbon nanotubes of 1-nm diameter , 1993, Nature.

[30]  M. S. de Vries,et al.  Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls , 1993, Nature.

[31]  A. M. Rao,et al.  Optical studies of fullerene-based solids , 1993 .

[32]  Ying Wang,et al.  Photoinduced Polymerization of Solid C60 Films , 1993, Science.

[33]  M. Dresselhaus,et al.  Ion Implantation in Diamond, Graphite and Related Materials. Springer‐Verlag Berlin, Heidelberg, 1992, 202 Seiten, 108 Abbildungen, 5 Tabellen, Preis: DM 79.00, ISBN 3‐540‐54956‐0 — ISBN 0‐387‐54956‐0 , 1992 .

[34]  Fujita,et al.  Electronic structure of graphene tubules based on C60. , 1992, Physical review. B, Condensed matter.

[35]  Fujita,et al.  Formation of general fullerenes by their projection on a honeycomb lattice. , 1992, Physical review. B, Condensed matter.

[36]  Riichiro Saito,et al.  Electronic structure of chiral graphene tubules , 1992 .

[37]  M. Dresselhaus,et al.  The properties of liquid carbon , 1990 .

[38]  P. Couturier Japan , 1988, The Lancet.

[39]  Dresselhaus,et al.  Observation of metallic conductivity in liquid carbon. , 1988, Physical review letters.

[40]  S. C. O'brien,et al.  C60: Buckminsterfullerene , 1985, Nature.

[41]  Donald M. Cox,et al.  Production and characterization of supersonic carbon cluster beams , 1984 .

[42]  B. Wilkens,et al.  Comparison of conductivity produced in polymers and carbon films by pyrolysis and high energy ion irradiation , 1984 .

[43]  M. Dresselhaus,et al.  Intercalation compounds of graphite , 1981 .

[44]  M. Dresselhaus,et al.  Raman scattering from in-plane lattice modes in low-stage graphite-alkali-metal compounds , 1977 .

[45]  M. Endo,et al.  Structural Improvement of Carbon Fibers Prepared from Benzene , 1976 .

[46]  M. Dresselhaus,et al.  Location of Electron and Hole Carriers in Graphite from Laser Magnetoreflection Data , 1968 .

[47]  D. Young,et al.  An induction furnace for operations up to 3400° C using well oriented graphite , 1962 .

[48]  J. W. Mcclure Theory of Diamagnetism of Graphite , 1960 .

[49]  J. W. McClure,et al.  Band Structure of Graphite and de Haas-van Alphen Effect , 1957 .

[50]  P. Wallace The Band Theory of Graphite , 1947 .

[51]  M. Dresselhaus,et al.  Raman Spectroscopy: Characterization of Edges, Defects, and the Fermi Energy of Graphene and sp 2 Carbons , 2011 .

[52]  F. Paéz Raman spectroscopy of double walled carbon nanotubes with different metallic and semiconducting configurations , 2010 .

[53]  L. B. Ebert Science of fullerenes and carbon nanotubes , 1996 .

[54]  M. Dresselhaus Carbon nanotubes , 1995 .

[55]  P. Schroeder Magnetoreflection of Graphite Using AN Infrared Laser Source. , 1970 .