On a mixture of Brenier and Strassen Theorems

We give a characterization of optimal transport plans for a variant of the usual quadratic transport cost introduced in [33]. Optimal plans are composition of a deterministic transport given by the gradient of a continuously differentiable convex function followed by a martingale coupling. We also establish some connections with Caffarelli's contraction theorem [14].

[1]  E. Milman Spectral estimates, contractions and hypercontractivity , 2015, Journal of Spectral Theory.

[2]  Optimal transport maps for Monge–Kantorovich problem on loop groups , 2007 .

[3]  Tongseok Lim Optimal martingale transport between radially symmetric marginals in general dimensions , 2014, Stochastic Processes and their Applications.

[4]  On ℝd-valued peacocks , 2013 .

[5]  Young-Heon Kim,et al.  Structure of optimal martingale transport plans in general dimensions , 2015, The Annals of Probability.

[6]  G. Bouchitté,et al.  A new class of costs for optimal transport planning , 2018, European Journal of Applied Mathematics.

[7]  Paul-Marie Samson,et al.  Displacement convexity of entropy and related inequalities on graphs , 2012, Probability Theory and Related Fields.

[8]  David Hobson,et al.  ROBUST BOUNDS FOR FORWARD START OPTIONS , 2012 .

[9]  N. Juillet Peacocks Parametrised by a Partially Ordered Set , 2016 .

[10]  Enrique Outerelo Domínguez,et al.  Mapping Degree Theory , 2009 .

[11]  A. Dembo Information inequalities and concentration of measure , 1997 .

[12]  A. Üstünel,et al.  Monge-Kantorovitch Measure Transportation and Monge-Ampère Equation on Wiener Space , 2004 .

[13]  Nestor Guillen,et al.  Five lectures on optimal transportation: Geometry, regularity and applications , 2010, 1011.2911.

[14]  Paul-Marie Samson,et al.  Transport-entropy inequalities on locally acting groups of permutations , 2016, 1609.07315.

[15]  H. D. March Local structure of multi-dimensional martingale optimal transport , 2018, 1805.09469.

[16]  F. Hirsch Peacocks and Associated Martingales, with Explicit Constructions , 2011 .

[17]  Martin Klimmek,et al.  Robust price bounds for the forward starting straddle , 2015, Finance Stochastics.

[18]  Paul-Marie Samson,et al.  Concentration of measure inequalities for Markov chains and $\Phi$-mixing processes , 2000 .

[19]  G. Lowther Limits Of One Dimensional Diffusions , 2007, 0712.2428.

[20]  Ludovic Rifford,et al.  Mass Transportation on Sub-Riemannian Manifolds , 2008, 0803.2917.

[21]  S. Yan From Hopf-Lax formula to optimal weak transfer plan , 2016, 1609.03405.

[22]  Giovanni Conforti,et al.  A second order equation for Schrödinger bridges with applications to the hot gas experiment and entropic transportation cost , 2017, Probability Theory and Related Fields.

[23]  Aurélien Alfonsi,et al.  Sampling of probability measures in the convex order by Wasserstein projection , 2020 .

[24]  Prasad Tetali,et al.  Characterization of a class of weak transport-entropy inequalities on the line , 2015, Annales de l'Institut Henri Poincaré, Probabilités et Statistiques.

[25]  R. McCann Polar factorization of maps on Riemannian manifolds , 2001 .

[26]  Nicola Gigli,et al.  On the inverse implication of Brenier-Mccann theorems and the structure of (P 2 (M),W 2 ) , 2011 .

[27]  M. Yor,et al.  Kellerer’s Theorem Revisited , 2015 .

[28]  M. Talagrand New concentration inequalities in product spaces , 1996 .

[29]  Ludger Rüschendorf,et al.  ON THE EXISTENCE OF PROBABILITY MEASURES WITH GIVEN MARGINALS , 1984 .

[30]  L. Ambrosio,et al.  Optimal mass transportation in the Heisenberg group , 2004 .

[31]  H. Kellerer,et al.  Markov-Komposition und eine Anwendung auf Martingale , 1972 .

[32]  C. Villani Topics in Optimal Transportation , 2003 .

[33]  Malcolm Bowles,et al.  A Theory of Transfers: Duality and convolution , 2018, 1804.08563.

[34]  K. Marton A measure concentration inequality for contracting markov chains , 1996 .

[35]  S. Rachev,et al.  Mass transportation problems , 1998 .

[36]  Christian L'eonard A survey of the Schr\"odinger problem and some of its connections with optimal transport , 2013, 1308.0215.

[37]  M. Beiglbock,et al.  On a problem of optimal transport under marginal martingale constraints , 2012, 1208.1509.

[38]  Infimum-convolution description of concentration properties of product probability measures, with applications , 2007 .

[39]  Nizar Touzi,et al.  An explicit martingale version of the one-dimensional Brenier theorem , 2016, Finance Stochastics.

[40]  Y. Brenier Polar Factorization and Monotone Rearrangement of Vector-Valued Functions , 1991 .

[41]  Aurélien Alfonsi,et al.  Sampling of Probability Measures in the Convex Order and Approximation of Martingale Optimal Transport Problems , 2017 .

[42]  The left-curtain martingale coupling in the presence of atoms , 2018, The Annals of Applied Probability.

[43]  Marcel Nutz,et al.  Canonical supermartingale couplings , 2016, The Annals of Probability.

[44]  M. Ledoux,et al.  Analysis and Geometry of Markov Diffusion Operators , 2013 .

[45]  K. Marton Bounding $\bar{d}$-distance by informational divergence: a method to prove measure concentration , 1996 .

[46]  Paul-Marie Samson,et al.  Concentration of measure principle and entropy-inequalities , 2017 .

[47]  Karl-Theodor Sturm,et al.  Optimal Maps and Exponentiation on Finite-Dimensional Spaces with Ricci Curvature Bounded from Below , 2013, 1305.4849.

[48]  Dario Cordero-Erausquin,et al.  Some Applications of Mass Transport to Gaussian-Type Inequalities , 2002 .

[49]  V. Strassen The Existence of Probability Measures with Given Marginals , 1965 .

[50]  L. Ambrosio,et al.  Gradient Flows: In Metric Spaces and in the Space of Probability Measures , 2005 .

[51]  Luis A. Caffarelli,et al.  Monotonicity Properties of Optimal Transportation¶and the FKG and Related Inequalities , 2000 .

[52]  J. Hiriart-Urruty,et al.  Fundamentals of Convex Analysis , 2004 .

[53]  Max Fathi,et al.  Curvature and transport inequalities for Markov chains in discrete spaces , 2015, 1509.07160.

[54]  Inequalities for the Gaussian measure and an application to Wiener space , 2001 .

[55]  M. Ledoux The concentration of measure phenomenon , 2001 .

[56]  M. Talagrand Concentration of measure and isoperimetric inequalities in product spaces , 1994, math/9406212.

[57]  J. K. Hunter,et al.  Measure Theory , 2007 .

[58]  N. Juillet Stability of the shadow projection and the left-curtain coupling , 2014, 1407.8009.

[59]  Existence and uniqueness of optimal maps on Alexandrov spaces , 2007, 0705.0437.

[60]  S. Rachev,et al.  A characterization of random variables with minimum L 2 -distance , 1990 .

[61]  Paul-Marie Samson,et al.  Kantorovich duality for general transport costs and applications , 2014, 1412.7480.

[62]  On R-valued peacocks , 2011 .

[63]  P. Samson Concentration Inequalities for Convex Functions on Product Spaces , 2003 .

[64]  C. Daskalakis,et al.  Strong Duality for a Multiple‐Good Monopolist , 2017 .

[65]  W. Gangbo,et al.  The geometry of optimal transportation , 1996 .

[66]  Wilfrid Gangbo An elementary proof of the polar factorization of vector-valued functions , 1994 .

[67]  M. Yor,et al.  Looking for Martingales Associated to a Self-Decomposable Law , 2010 .

[68]  Christos Tzamos,et al.  Strong Duality for a Multiple-Good Monopolist , 2014, EC.

[69]  R. Rockafellar Convex Analysis: (pms-28) , 1970 .

[70]  丸山 徹 Convex Analysisの二,三の進展について , 1977 .

[71]  L. Ripani,et al.  Around the entropic Talagrand inequality , 2018, Bernoulli.

[72]  Y. Shu Hamilton-Jacobi Equations on Graph and Applications , 2015, Potential Analysis.

[73]  Julio D. Backhoff Veraguas,et al.  Existence, duality, and cyclical monotonicity for weak transport costs , 2018, Calculus of Variations and Partial Differential Equations.

[74]  Christian L'eonard,et al.  Transport Inequalities. A Survey , 2010, 1003.3852.