Relational Neural Gas

We introduce relational variants of neural gas, a very efficient and powerful neural clustering algorithm, which allow a clustering and mining of data given in terms of a pairwise similarity or dissimilarity matrix. It is assumed that this matrix stems from Euclidean distance or dot product, respectively, however, the underlying embedding of points is unknown. One can equivalently formulate batch optimization in terms of the given similarities or dissimilarities, thus providing a way to transfer batch optimization to relational data. For this procedure, convergence is guaranteed and extensions such as the integration of label information can readily be transferred to this framework.

[1]  Horst Bunke,et al.  Edit distance-based kernel functions for structural pattern classification , 2006, Pattern Recognit..

[2]  Samuel Kaski,et al.  Discriminative Clustering of Yeast Stress Response , 2005 .

[3]  Klaus Obermayer,et al.  Classi cation on Pairwise Proximity , 2007 .

[4]  Teuvo Kohonen,et al.  Self-Organizing Maps , 2010 .

[5]  M. V. Velzen,et al.  Self-organizing maps , 2007 .

[6]  James C. Bezdek,et al.  Nerf c-means: Non-Euclidean relational fuzzy clustering , 1994, Pattern Recognit..

[7]  Bernhard Schölkopf,et al.  The Kernel Trick for Distances , 2000, NIPS.

[8]  Frank-Michael Schleif,et al.  Supervised median neural gas , 2006 .

[9]  Thomas Villmann,et al.  Batch and median neural gas , 2006, Neural Networks.

[10]  Thomas Villmann,et al.  Supervised Batch Neural Gas , 2006, ANNPR.

[11]  Klaus Obermayer,et al.  Self-organizing maps and clustering methods for matrix data , 2004, Neural Networks.

[12]  Jarkko Venna,et al.  Trustworthiness and metrics in visualizing similarity of gene expression , 2003, BMC Bioinformatics.

[13]  M. Vingron,et al.  Quantifying the local reliability of a sequence alignment. , 1996, Protein engineering.

[14]  Thomas Villmann,et al.  Magnification control for batch neural gas , 2007, ESANN.

[15]  Alfons Juan-Císcar,et al.  On the use of normalized edit distances and an efficient k-NN search technique (k-AESA) for fast and accurate string classification , 2000, Proceedings 15th International Conference on Pattern Recognition. ICPR-2000.

[16]  Thomas Villmann,et al.  Margin based Active Learning for LVQ Networks , 2007, ESANN.

[17]  Tom Heskes,et al.  Self-organizing maps, vector quantization, and mixture modeling , 2001, IEEE Trans. Neural Networks.

[18]  Panu Somervuo,et al.  How to make large self-organizing maps for nonvectorial data , 2002, Neural Networks.

[19]  James C. Bezdek,et al.  Relational duals of the c-means clustering algorithms , 1989, Pattern Recognit..

[20]  Thomas Villmann,et al.  Fuzzy classification by fuzzy labeled neural gas , 2006, Neural Networks.

[21]  Claus Bahlmann,et al.  Learning with Distance Substitution Kernels , 2004, DAGM-Symposium.

[22]  Thomas Martinetz,et al.  Topology representing networks , 1994, Neural Networks.

[23]  Peter Tiño,et al.  A generative probabilistic approach to visualizing sets of symbolic sequences , 2004, KDD '04.

[24]  W. N. Street,et al.  Computer-derived nuclear features distinguish malignant from benign breast cytology. , 1995, Human pathology.

[25]  Thomas Martinetz,et al.  'Neural-gas' network for vector quantization and its application to time-series prediction , 1993, IEEE Trans. Neural Networks.

[26]  E. Granum,et al.  Quantitative analysis of 6985 digitized trypsin G ‐banded human metaphase chromosomes , 1980, Clinical genetics.

[27]  Klaus Obermayer,et al.  A Stochastic Self-Organizing Map for Proximity Data , 1999, Neural Computation.

[28]  Alessio Micheli,et al.  Recursive self-organizing network models , 2004, Neural Networks.

[29]  Hujun Yin,et al.  On the equivalence between kernel self-organising maps and self-organising mixture density networks , 2006, Neural Networks.

[30]  A. K. Qin,et al.  Kernel neural gas algorithms with application to cluster analysis , 2004, ICPR 2004.

[31]  J. Kruskal Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis , 1964 .

[32]  Thomas Villmann,et al.  Neural Gas Clustering for Dissimilarity Data with Continuous Prototypes , 2007, IWANN.

[33]  Fabrice Rossi,et al.  A Fast Algorithm for the Self-Organizing Map on Dissimilarity Data , 2005 .

[34]  W. Floyd,et al.  HYPERBOLIC GEOMETRY , 1996 .