Arrhythmic dynamics from singularity analysis of electrocardiographic maps

From a point view of nonlinear dynamics, the electrical activity of the heart is a complex dynamical system, whose dynamics reflects the actual state of health of the heart. Nonlinear signal-processing methods are needed in order to accurately characterize these signals and improve understanding of cardiac arrhythmias. Recent developments on reconstructible signals and multiscale information content show that an analysis in terms of singularity exponents provides compact and meaningful descriptors of the structure and dynamics of the system. Such approach gives a compact representation atrial arrhythmic dynamics, which can sharply highlight regime transitions and arrhythmogenic areas.

[1]  K. Narayanan,et al.  On the evidence of deterministic chaos in ECG: Surrogate and predictability analysis. , 1998, Chaos.

[2]  P Roussel,et al.  A wavelet transform for atrial fibrillation Cycle Length measurements , 2009, 2009 36th Annual Computers in Cardiology Conference (CinC).

[3]  J Clémenty,et al.  Spontaneous initiation of atrial fibrillation by ectopic beats originating in the pulmonary veins. , 1998, The New England journal of medicine.

[4]  Oriol Pont,et al.  An Optimized Algorithm for the Evaluation of Local Singularity Exponents in Digital Signals , 2011, IWCIA.

[5]  Jean-Marie Bilbault,et al.  A Hybrid Stimulation Strategy for Suppression of Spiral , 2011 .

[6]  Jacques Clementy,et al.  Cartographie et ablation des arythmies ventriculaires malignes , 2005 .

[7]  B. Lindsay,et al.  Noninvasive Characterization of Epicardial Activation in Humans With Diverse Atrial Fibrillation Patterns , 2010, Circulation.

[8]  Jeffrey M. Hausdorff,et al.  Physionet: Components of a New Research Resource for Complex Physiologic Signals". Circu-lation Vol , 2000 .

[9]  Prashanthan Sanders,et al.  Techniques, Evaluation, and Consequences of Linear Block at the Left Atrial Roof in Paroxysmal Atrial Fibrillation: A Prospective Randomized Study , 2005, Circulation.

[10]  T. Musha,et al.  1/f Fluctuation of Heartbeat Period , 1982, IEEE Transactions on Biomedical Engineering.

[11]  J Clémenty,et al.  [Mapping and ablation of malignant ventricular arrhythmias]. , 2005, Archives des maladies du coeur et des vaisseaux.

[12]  Prashanthan Sanders,et al.  Frequency Mapping of the Pulmonary Veins in Paroxysmal Versus Permanent Atrial Fibrillation , 2006, Journal of cardiovascular electrophysiology.

[13]  Binbin Xu,et al.  Investigation of Micro Spiral Waves at Cellular Level Using a Microelectrode Arrays Technology , 2011, Int. J. Bifurc. Chaos.

[14]  M. Haissaguerre,et al.  A singularity-analysis approach to characterize epicardial electric potential , 2012, 2012 Computing in Cardiology.

[15]  J. Holcik,et al.  Applying nonlinear dynamics to ECG signal processing , 1998, IEEE Engineering in Medicine and Biology Magazine.

[16]  Oriol Pont,et al.  Microcanonical Processing Methodology for ECG and Intracardial Potential: Application to Atrial Fibrillation , 2011, Trans. Mass Data Anal. Images Signals.

[17]  G.B. Moody,et al.  The impact of the MIT-BIH Arrhythmia Database , 2001, IEEE Engineering in Medicine and Biology Magazine.

[18]  Prashanthan Sanders,et al.  Prevalence of pulmonary vein disconnection after anatomical ablation for atrial fibrillation: consequences of wide atrial encircling of the pulmonary veins. , 2005, European heart journal.

[19]  Jeffrey M. Hausdorff,et al.  Long-range anticorrelations and non-Gaussian behavior of the heartbeat. , 1993, Physical review letters.

[20]  Y. Rudy,et al.  Noninvasive electrocardiographic imaging for cardiac electrophysiology and arrhythmia , 2004, Nature Medicine.

[21]  Antonio Turiel,et al.  Microcanonical multifractal formalism—a geometrical approach to multifractal systems: Part I. Singularity analysis , 2008 .

[22]  Prashanthan Sanders,et al.  Organization of Frequency Spectra of Atrial Fibrillation: Relevance to Radiofrequency Catheter Ablation , 2006, Journal of cardiovascular electrophysiology.

[23]  Oriol Pont,et al.  A Novel Analysis Method to Characterize Heartbeat Dynamics through the Microcanonical Multiscale Formalism , 2011, MDA.

[24]  Antonio Turiel,et al.  On Optimal Wavelet Bases for the Realization of Microcanonical Cascade Processes , 2008, Int. J. Wavelets Multiresolution Inf. Process..

[25]  M. Haissaguerre,et al.  Heartbeat dynamics from a Microcanonical Multifractal approach , 2011, 2011 Computing in Cardiology.

[26]  Y. Rudy,et al.  Electrocardiographic imaging of cardiac resynchronization therapy in heart failure: observation of variable electrophysiologic responses. , 2006, Heart rhythm.

[27]  Prashanthan Sanders,et al.  Mapping and Ablation of Ventricular Fibrillation Associated With Long-QT and Brugada Syndromes , 2003, Circulation.

[28]  Richard I. Kitney,et al.  The Study of heart-rate variability , 1980 .