Explicit Isoperimetric Constants and Phase Transitions in the Random-Cluster Model

The random-cluster model is a dependent percolation model that has applications in the study of Ising and Potts models. In this paper, several new results are obtained for the random-cluster model on nonamenable graphs with cluster parameter q > 1. Among these, the main ones are the absence of percolation for the free random-cluster measure at the critical value and examples of planar regular graphs with regular dual where p free c (q) > p wired u (q) for q large enough. The latter follows from considerations of isoperimetric constants, and we give the first nontrivial explicit calculations of such constants. Such considerations are also used to prove nonrobust phase transition for the Potts model on nonamenable regular graphs.

[1]  Roberto H. Schonmann,et al.  Multiplicity of Phase Transitions and Mean-Field Criticality on Highly Non-Amenable Graphs , 2001 .

[2]  R. Lyons,et al.  Coupling and Bernoullicity in random-cluster and Potts models , 2001, math/0104174.

[3]  Norbert Peyerimhoff,et al.  Curvature and Geometry of Tessellating Plane Graphs , 2001, Discret. Comput. Geom..

[4]  Olle Häggström,et al.  The Ising model on diluted graphs and strong amenability , 2000 .

[5]  Y. Peres,et al.  Broadcasting on trees and the Ising model , 2000 .

[6]  M. Biskup,et al.  Gibbs states of graphical representations of the Potts model with external fields , 2000 .

[7]  A. Enter A Remark on the Notion of Robust Phase Transitions , 1999, math-ph/9911011.

[8]  R. Lyons Phase transitions on nonamenable graphs , 1999, math/9908177.

[9]  C. C. Wu Ising Models on Hyperbolic Graphs II , 2000 .

[10]  I. Benjamini,et al.  Percolation in the hyperbolic plane , 1999, math/9912233.

[11]  O. Haggstrom,et al.  The random geometry of equilibrium phases , 1999, math/9905031.

[12]  R. Pemantle,et al.  Robust Phase Transitions for Heisenberg and other Models on General Trees , 1999, math/0404092.

[13]  Russell Lyons,et al.  Group-invariant Percolation on Graphs , 1999 .

[14]  Olle Häggström,et al.  Monotonicity of uniqueness for percolation on Cayley graphs: all infinite clusters are born simultaneously , 1999 .

[15]  Johan Jonasson,et al.  The random cluster model on a general graph and a phase transition characterization of nonamenability , 1999 .

[16]  Olle Häggström,et al.  Percolation transitive graphs as a coalescent process: relentless merging followed by simultaneous uniqueness , 1999 .

[17]  Eric Babson,et al.  Cut sets and normed cohomology with applications to percolation , 1999 .

[18]  Persi Diaconis,et al.  Iterated Random Functions , 1999, SIAM Rev..

[19]  O. Schramm,et al.  Indistinguishability of Percolation Clusters , 1998, math/9811170.

[20]  Olle Häggström,et al.  Infinite clusters in dependent automorphism invariant percolation on trees , 1997 .

[21]  R. Schonmann,et al.  Domination by product measures , 1997 .

[22]  J. Steif,et al.  Amenability and Phase Transition in the Ising Model , 1997 .

[23]  Rostislav Grigorchuk,et al.  On problems related to growth, entropy, and spectrum in group theory , 1997 .

[24]  C. Wu Ising models on hyperbolic graphs , 1996 .

[25]  Thomas Chaboud,et al.  Planar Cayley Graphs with Regular Dual , 1996, Int. J. Algebra Comput..

[26]  David Bruce Wilson,et al.  Exact sampling with coupled Markov chains and applications to statistical mechanics , 1996, Random Struct. Algorithms.

[27]  I. Benjamini,et al.  Percolation Beyond $Z^d$, Many Questions And a Few Answers , 1996 .

[28]  Olle Häggström,et al.  The random-cluster model on a homogeneous tree , 1996 .

[29]  Olle Häggström,et al.  Random-cluster representations in the study of phase transitions , 1996 .

[30]  G. Grimmett The Stochastic Random-Cluster Process and the Uniqueness of Random-Cluster Measures , 1995 .

[31]  J. Ruiz,et al.  On the purity of the limiting gibbs state for the Ising model on the Bethe lattice , 1995 .

[32]  G. Grimmett Comparison and disjoint-occurrence inequalities for random-cluster models , 1995 .

[33]  C. Borgs,et al.  The covariance matrix of the Potts model: A random cluster analysis , 1994, adap-org/9411001.

[34]  G. Grimmett,et al.  Strict inequality for critical values of Potts models and random-cluster processes , 1993 .

[35]  D. Welsh,et al.  Percolation in the random cluster process and Q-state Potts model , 1993 .

[36]  S. Adams Følner Independence and the amenable Ising model , 1992, Ergodic Theory and Dynamical Systems.

[37]  C. Newman,et al.  Uniqueness of the infinite component in a random graph with applications to percolation and spin glasses , 1992 .

[38]  Maura Salvatori,et al.  On the norms of group-invariant transition operators on graphs , 1992 .

[39]  Jeffrey E. Steif,et al.  -Convergence to equilibrium and space—time bernoullicity for spin systems in the M < ε case , 1991, Ergodic Theory and Dynamical Systems.

[40]  Y. Higuchi Level set representation for the Gibbs states of the ferromagnetic ising model , 1991 .

[41]  C. M. Series,et al.  Ising models on the Lobachevsky plane , 1990 .

[42]  Charles M. Newman,et al.  Percolation in ∞ + 1 dimensions , 1990 .

[43]  R. Burton,et al.  Density and uniqueness in percolation , 1989 .

[44]  A. Sokal,et al.  Generalization of the Fortuin-Kasteleyn-Swendsen-Wang representation and Monte Carlo algorithm. , 1988, Physical review. D, Particles and fields.

[45]  Hans-Otto Georgii,et al.  Gibbs Measures and Phase Transitions , 1988 .

[46]  J. Chayes,et al.  Discontinuity of the magnetization in one-dimensional 1/¦x−y¦2 Ising and Potts models , 1988 .

[47]  Benjamin Weiss,et al.  Entropy and isomorphism theorems for actions of amenable groups , 1987 .

[48]  J. Chayes,et al.  Exponential decay of connectivities in the two-dimensional ising model , 1987 .

[49]  William J. Floyd,et al.  Growth functions on Fuchsian groups and the Euler characteristic , 1987 .

[50]  Wang,et al.  Nonuniversal critical dynamics in Monte Carlo simulations. , 1987, Physical review letters.

[51]  D. Thouless,et al.  A mean field spin glass with short-range interactions , 1986 .

[52]  V. Trofimov,et al.  Automorphism groups of graphs as topological groups , 1985 .

[53]  H. Kesten Percolation theory for mathematicians , 1982 .

[54]  Charles M. Newman,et al.  Infinite clusters in percolation models , 1981 .

[55]  Lucio Russo,et al.  Markov processes, Bernoulli schemes, and Ising model , 1973 .

[56]  C. Fortuin On the random-cluster model: III. The simple random-cluster model , 1972 .

[57]  C. Fortuin,et al.  On the random-cluster model: I. Introduction and relation to other models , 1972 .