Preliminary characterization of flint raw material used on prehistoric sites in NW Belgium

This study aims at analyzing the mineralogical, chemical, and structural characteristics of flint raw material used for the production of prehistoric stone tools in NW Belgium. Understanding these characteristics is important to recognize their value for tool making and even tool use during prehistory. Due to its formation process, flint is defined by a wide variety of internal structures, chemical variations, and impurities. Moreover, alteration processes cause additional chemical and structural changes complicating the study of this material. Archaeological artifacts often display alteration features, mostly expressed as patination or burning, leading them to be regularly discarded from the functional analysis of lithic tools. By not incorporating these artifacts, our understanding of the investigated assemblage is biased. It is therefore important to investigate the influence of flint characteristics on its weathering behavior, and the impact of preservation of prehistoric use‐wear traces on flint artifacts. The characteristics of flint raw material and natural patination were studied using a combination of different techniques, such as macroscopic analysis, optical microscopy, X‐ray fluorescence, and high‐resolution X‐ray computed tomography. This resulted in a detailed description and distinction of the different flint variants used on prehistoric sites in NW Belgium and a good understanding of patination.

[1]  C. Kind,et al.  Stone heat treatment in the Early Mesolithic of southwestern Germany: Interpretation and identification , 2017, PloS one.

[2]  P. Crombé,et al.  Human resilience to Lateglacial climate and environmental change in the Scheldt basin (NW Belgium) , 2017 .

[3]  L. Bellot-Gurlet,et al.  The investment in time needed for heat treatment of flint and chert , 2016, Archaeological and Anthropological Sciences.

[4]  Telmo Pereira,et al.  Presenting LusoLit: A lithotheque of knappable raw materials from central and southern Portugal , 2016 .

[5]  A. Burke,et al.  Introducing LIR (Lithotheque Ireland), a reference collection of flaked stone tool raw materials from Ireland , 2016 .

[6]  P. Filzmoser,et al.  Geochemical Sourcing of Flint Artifacts from Western Belgium and the German Rhineland: Testing Hypotheses on Gravettian Period Mobility and Raw Material Economy , 2016 .

[7]  Veerle Rots,et al.  Hunting with trapezes at Bazel-Sluis: the results of a functional analysis , 2015 .

[8]  W. James Stemp,et al.  Surface analysis of stone and bone tools , 2015 .

[9]  P. Filzmoser,et al.  Radiolarite studies at Krems-Wachtberg (Lower Austria): Northern Alpine versus Carpathian lithic resources , 2014 .

[10]  V. Cnudde,et al.  A sealed flint knapping site from the Younger Dryas in the Scheldt valley (Belgium): bridging the gap in human occupation at the Pleistocene-Holocene transition in W Europe , 2014 .

[11]  A. Milnes,et al.  Driving forces for the weathering and alteration of silica in the regolith: Implications for studies of prehistoric flint tools , 2014 .

[12]  Antony Borel,et al.  Scanning Electron and Optical Light Microscopy: two complementary approaches for the understanding and interpretation of usewear and residues on stone tools , 2014 .

[13]  J. Vergès,et al.  The use of sequential experiments and SEM in documenting stone tool microwear , 2014 .

[14]  P. Tafforeau,et al.  Plant inclusions from the Cenomanian flints of Archingeay, Les Nouillers, western France , 2014 .

[15]  C. Guéret L'outillage du Premier Mésolithique dans le Nord de la France et en Belgique : éclairages fonctionnels , 2013 .

[16]  G. Kennaway,et al.  Investigating experimental knapping damage on an antler hammer: a pilot-study using high-resolution imaging and analytical techniques , 2013 .

[17]  Veerle Cnudde,et al.  HECTOR: A 240kV micro-CT setup optimized for research , 2013 .

[18]  Veerle Cnudde,et al.  High-resolution X-ray computed tomography in geosciences: A review of the current technology and applications , 2013 .

[19]  Silvia M. Bello,et al.  Application of 3-dimensional microscopy and micro-CT scanning to the analysis of Magdalenian portable art on bone and antler , 2013 .

[20]  V. Cnudde,et al.  Preliminary structural and chemical study of two quartzite varieties from the same geological formation: a first step in the sourcing of quartzites utilized during the Mesolithic in northwest Europe , 2012 .

[21]  G. Gauthier,et al.  Assessing XRF for the geochemical characterization of radiolarian chert artifacts from northeastern North America , 2012 .

[22]  H. Neff Laser Ablation ICP‐MS in Archaeology , 2012 .

[23]  Philippe Crombé,et al.  Hunter-gatherer responses to environmental change during the Pleistocene-Holocene transition in the southern North Sea basin: final Palaeolithic-Final Mesolithic land use in northwest Belgium , 2011 .

[24]  R. L. Abel,et al.  Digital preservation and dissemination of ancient lithic technology with modern micro-CT , 2011, Comput. Graph..

[25]  G. Gauthier,et al.  The effects of surface weathering on the geochemical analysis of archaeological lithic samples using non‐destructive polarized energy dispersive XRF , 2011 .

[26]  L. Stemmerik,et al.  Diagenesis of Flint and Porcellanite in the Maastrichtian Chalk at Stevns Klint, Denmark , 2010 .

[27]  A. V. Gijn Flint in Focus: Lithic Biographies in the Neolithic and Bronze Age , 2009 .

[28]  N. Etxebarria,et al.  Non-destructive spectrometry methods to study the distribution of archaeological and geological chert samples. , 2009, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[29]  M. Domański,et al.  Heat treatment of Polish flints , 2009 .

[30]  M. Bustillo,et al.  IS THE MACROSCOPIC CLASSIFICATION OF FLINT USEFUL? A PETROARCHAEOLOGICAL ANALYSIS AND CHARACTERIZATION OF FLINT RAW MATERIALS FROM THE IBERIAN NEOLITHIC MINE OF CASA MONTERO* , 2009 .

[31]  P. Fernandes,et al.  Origins of prehistoric flints: The neocortex memory revealed by scanning electron microscopy , 2007 .

[32]  A. Saville The last hunter‐gatherer‐fishermen in Sandy Flanders (NW Belgium). The Verrebroek and Doel excavation projects. Volume 1: Palaeo‐environment, chronology and features. Archaeological Reports Ghent University, 3. P. Crombé (ed.). Publisher: Academia Press, Ghent, 2005 (334 pp.) ISBN: 90‐382‐0679‐0 , 2007 .

[33]  Robert J. Hoard,et al.  Lithic Analysis , 2003 .

[34]  A. V. Dhondt,et al.  Cretaceous lithostratigraphic units (Belgium) , 2002 .

[35]  William Andrefsky,et al.  Lithics: Macroscopic Approaches to Analysis , 1999 .

[36]  Koen Janssens,et al.  Analysis of X‐ray spectra by iterative least squares (AXIL): New developments , 1994 .

[37]  K. Govindaraju,et al.  1994 REPORT ON ZINNWALDITE ZW‐C ANALYSED BY NINETY‐TWO GIT‐IWG MEMBER‐LABORATORIES , 1994 .

[38]  J. Hancock Sea-level changes around the Cenomanian-Turonian boundary , 1993 .

[39]  M. Domański,et al.  Effect of heat treatment on Siliceous rocks used in prehistoric lithic technology , 1992 .

[40]  Brian M. Fagan,et al.  Archaeology: Theories, Methods, and Practice , 1992 .

[41]  Annelou van Gijn,et al.  The wear and tear of flint : principles of functional analysis applied to Dutch Neolithic assemblages , 1989 .

[42]  Koen Janssens,et al.  AXIL-PC: software for the analysis of complex X-ray spectra , 1986 .

[43]  Patrick C. Vaughan,et al.  Use-Wear Analysis of Flaked Stone Tools , 1985 .

[44]  K. Govindaraju Report (1980) on Three GIT‐IWG Rock Reference Samples: Anorthosite from Greenland, AN‐G; Basalte d'Essey‐la‐Côte, BE‐N; Granite de Beauvoir, MA‐N , 1980 .

[45]  Lawrence H. Keeley,et al.  Experimental Determination of Stone Tool Uses: A Microwear Analysis , 1979 .

[46]  R. Rottländer THE FORMATION OF PATINA ON FLINT , 1975 .

[47]  V. J. Hurst,et al.  Patination of Cultural Flints , 1961, Science.

[48]  R. Schmalz Flint and the Patination of Flint Artifacts , 1960, Proceedings of the Prehistoric Society.

[49]  M. Brandl Genesis, Provenance and Classification of Rocks within the Chert Group in Central Europe , 2014 .

[50]  Patrick Schmidt,et al.  Crystallographic and structural transformations of sedimentary chalcedony in flint upon heat treatment , 2012 .

[51]  W. Postl,et al.  Repolust Cave ( Austria ) revisited : Provenance studies of the chert finds Fundrevision der Repolusthöhle ( Österreich ) : Herkunftsbestimmungen der Hornsteinfunde , 2012 .

[52]  P. Crombé Contact and interaction between early farmers and late hunter-gatherers in Belgium during the 6th and 5th millennium calBC , 2010 .

[53]  P. Crombé,et al.  L'outillage commun du premier site d'habitat néolithique découvert en Flandre (Belgique). Étude fonctionnelle de l'industrie lithique taillée du site de Waardamme (3e millénaire av. J.-C.) , 2007 .

[54]  P. Crombé,et al.  Etude fonctionnelle du matériel en silex du site Mésolithique ancien de Verrebroek (Flandres, Belgique): premiers résultats , 2005 .

[55]  M. Petrelli,et al.  GEOCHEMICAL CHARACTERIZATION OF FLINT ARTIFACTS BY INDUCTIVELY COUPLED PLASMA- MASS SPECTROMETRY WITH LASER SAMPLING (LA-ICP-MS): RESULTS AND PROSPECTS , 2005 .

[56]  I. Clemente-Conte Thermal alterations of flint implements and the conservation of microwear polish: preliminary experimental observations , 1997 .

[57]  M. D. Grooth A reference collection (Lithotheque) of the flint types exploited and used in the Southern Netherlands and the Flemish Region , 1994 .

[58]  K. Govindaraju,et al.  1994 compilation of working values and sample description for 383 geostandards , 1994 .

[59]  Deborah Olausson,et al.  Experiments to Investigate the Effects of Heat Treatment on Use-wear on Flint Tools , 1983, Proceedings of the Prehistoric Society.

[60]  M. W. Thompson,et al.  Prehistoric technology : an experimental study of the oldest tools and artefacts from traces of manufacture and wear , 1970 .