Satellite-measured net primary production in the Chesapeake Bay

[1]  Harry V. Wang,et al.  Determining the age of water and long-term transport timescale of the Chesapeake Bay , 2007 .

[2]  B Gentili,et al.  Diffuse reflectance of oceanic waters: its dependence on Sun angle as influenced by the molecular scattering contribution. , 1991, Applied optics.

[3]  Menghua Wang,et al.  Water property monitoring and assessment for China's inland Lake Taihu from MODIS-Aqua measurements , 2011 .

[4]  S. Maritorena,et al.  Atmospheric correction of satellite ocean color imagery: the black pixel assumption. , 2000, Applied optics.

[5]  Wei Shi,et al.  Characterization of turbidity in Florida's Lake Okeechobee and Caloosahatchee and St. Lucie estuaries using MODIS-Aqua measurements. , 2012, Water research.

[6]  Suhung Shen,et al.  Remotely‐sensed chl a at the Chesapeake Bay mouth is correlated with annual freshwater flow to Chesapeake Bay , 2005 .

[7]  Menghua Wang,et al.  Retrieval of diffuse attenuation coefficient in the Chesapeake Bay and turbid ocean regions for satellite ocean color applications , 2009 .

[8]  J. Adolf,et al.  Bio-optical model for Chesapeake Bay and the Middle Atlantic Bight , 2004 .

[9]  W. Richard,et al.  TEMPERATURE AND PHYTOPLANKTON GROWTH IN THE SEA , 1972 .

[10]  L. Harding,et al.  Climate forcing of the spring bloom in Chesapeake Bay , 2007 .

[11]  T. Malone,et al.  Influences of river flow on the dynamics of phytoplankton production in a partially stratified estuary , 1988 .

[12]  Michael R. Roman,et al.  Eutrophication of Chesapeake Bay: historical trends and ecological interactions , 2005 .

[13]  T. Fisher,et al.  Photosynthesis patterns in Chesapeake Bay phytoplankton: short- and long-term responses of P-l curve parameters to light , 1985 .

[14]  L. Harding,et al.  SeaWiFS retrievals of chlorophyll in Chesapeake Bay and the mid-Atlantic bight , 2005 .

[15]  L. Harding Long-term trends in the distribution of phytoplankton in Chesapeake Bay: roles of light, nutrients and streamflow , 1994 .

[16]  B. Franz,et al.  Regional and seasonal variability of chlorophyll-a in Chesapeake Bay as observed by SeaWiFS and MODIS-Aqua , 2009 .

[17]  Menghua Wang,et al.  The NIR-SWIR combined atmospheric correction approach for MODIS ocean color data processing. , 2007, Optics express.

[18]  M. Kahru,et al.  Ocean Color Chlorophyll Algorithms for SEAWIFS , 1998 .

[19]  Jack W. Pierce,et al.  Modeling spectral diffuse attenuation, absorption, and scattering coefficients in a turbid estuary , 1990 .

[20]  D. Flemer Primary production in the Chesapeake Bay , 1970 .

[21]  Wei Shi,et al.  MODIS‐derived ocean color products along the China east coastal region , 2007 .

[22]  James D. Hagy,et al.  Hypoxia in Chesapeake Bay, 1950–2001: Long-term change in relation to nutrient loading and river flow , 2004 .

[23]  H. Gordon,et al.  Normalized water-leaving radiance: revisiting the influence of surface roughness. , 2005, Applied optics.

[24]  T. Platt,et al.  Oceanic Primary Production: Estimation by Remote Sensing at Local and Regional Scales , 1988, Science.

[25]  J. H. Tuttle,et al.  Lateral variation in the production and fate of phytoplankton in a partially stratified estuary , 1986 .

[26]  B. Franz,et al.  Evaluation of shortwave infrared atmospheric correction for ocean color remote sensing of Chesapeake Bay , 2010 .

[27]  Xiaoxiong Xiong,et al.  On-Orbit Calibration and Performance of Aqua MODIS Reflective Solar Bands , 2010, IEEE Transactions on Geoscience and Remote Sensing.

[28]  Wei Shi,et al.  Remote Sensing of Water Optical Property for China's Inland Lake Taihu Using the SWIR Atmospheric Correction With 1640 and 2130 nm Bands , 2013, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[29]  H. Bouman,et al.  Dependence of light-saturated photosynthesis on temperature and community structure , 2005 .

[30]  Lawrence W. Harding,et al.  Long-term increase of phytoplankton biomass in Chesapeake Bay, 1950-1994* , 1997 .

[31]  W. D. Miller Climate forcing of phytoplankton dynamics in Chesapeake Bay , 2006 .

[32]  P. Falkowski,et al.  Photosynthetic rates derived from satellite‐based chlorophyll concentration , 1997 .

[33]  Wei Shi,et al.  Sensor Noise Effects of the SWIR Bands on MODIS-Derived Ocean Color Products , 2012, IEEE Transactions on Geoscience and Remote Sensing.

[34]  E. Houde,et al.  Estuarine Ecosystem Response Captured Using a Synoptic Climatology , 2009 .

[35]  Menghua Wang,et al.  Tidal effects on ecosystem variability in the Chesapeake Bay from MODIS-Aqua , 2013 .

[36]  Lawrence W. Harding,et al.  Toward a Predictive Understanding of Primary Productivity in a Temperate, Partially Stratified Estuary , 2002 .

[37]  M. Roman,et al.  Long-term trends in mesozooplankton abundance in Chesapeake Bay, USA: influence of freshwater input , 2004 .

[38]  Menghua Wang,et al.  An assessment of the black ocean pixel assumption for MODIS SWIR bands , 2009 .

[39]  J. Adolf,et al.  Environmental forcing of phytoplankton floral composition, biomass, and primary productivity in Chesapeake Bay, USA , 2006 .

[40]  C. McClain,et al.  Long-term changes in light scattering in Chesapeake Bay inferred from Secchi depth, light attenuation, and remote sensing measurements , 2011 .

[41]  Lawrence W. Harding,et al.  Phytoplankton production in two east coast estuaries: Photosynthesis-light functions and patterns of carbon assimilation in Chesapeake and Delaware Bays , 1986 .

[42]  L. Ward,et al.  Phytoplankton, nutrients, and turbidity in the Chesapeake, Delaware, and Hudson estuaries , 1988 .

[43]  K. Ruddick,et al.  Atmospheric correction of SeaWiFS imagery for turbid coastal and inland waters. , 2000, Applied optics.

[44]  Curt H. Davis,et al.  Ocean Color products from Visible Infared Imager Radiometer Suite (VIIRS) , 2012, 2012 IEEE International Geoscience and Remote Sensing Symposium.

[45]  J. Schubel,et al.  Turbidity Maximum of the Northern Chesapeake Bay , 1968, Science.

[46]  Menghua Wang,et al.  Water properties in Chesapeake Bay from MODIS-Aqua measurements , 2012 .

[47]  Menghua Wang,et al.  Retrieval of water-leaving radiance and aerosol optical thickness over the oceans with SeaWiFS: a preliminary algorithm. , 1994, Applied optics.

[48]  Menghua Wang,et al.  Estimation of ocean contribution at the MODIS near‐infrared wavelengths along the east coast of the U.S.: Two case studies , 2005 .

[49]  Menghua Wang,et al.  Evaluation of MODIS SWIR and NIR-SWIR atmospheric correction algorithms using SeaBASS data , 2009 .

[50]  Menghua Wang,et al.  Effects of ocean surface reflectance variation with solar elevation on normalized water-leaving radiance. , 2006, Applied optics.

[51]  Maria Tzortziou,et al.  Remote sensing reflectance and inherent optical properties in the mid Chesapeake Bay , 2007 .

[52]  D. W. Pritchard,et al.  Responses of upper Chesapeake Bay to variations in discharge of the Susquehanna River , 1986 .

[53]  D. Antoine,et al.  Oceanic primary production: 2. Estimation at global scale from satellite (Coastal Zone Color Scanner) chlorophyll , 1996 .

[54]  W. M. Kemp,et al.  Organic carbon balance and net ecosystem metabolism in Chesapeake Bay , 1997 .

[55]  K. Voss,et al.  Impacts of VIIRS SDR performance on ocean color products , 2013 .

[56]  Menghua Wang Remote sensing of the ocean contributions from ultraviolet to near-infrared using the shortwave infrared bands: simulations. , 2007, Applied optics.

[57]  Menghua Wang,et al.  Evaluation of the VIIRS Ocean Color Monitoring Performance in Coastal Regions , 2013 .

[58]  Anatoly A. Gitelson,et al.  Remote chlorophyll-a retrieval in turbid, productive estuaries : Chesapeake Bay case study , 2007 .