Distributing the Kalman Filter for Large-Scale Systems

This paper presents a distributed Kalman filter to estimate the state of a sparsely connected, large-scale, n -dimensional, dynamical system monitored by a network of N sensors. Local Kalman filters are implemented on nl-dimensional subsystems, nl Lt n, obtained by spatially decomposing the large-scale system. The distributed Kalman filter is optimal under an Lth order Gauss-Markov approximation to the centralized filter. We quantify the information loss due to this Lth-order approximation by the divergence, which decreases as L increases. The order of the approximation L leads to a bound on the dimension of the subsystems, hence, providing a criterion for subsystem selection. The (approximated) centralized Riccati and Lyapunov equations are computed iteratively with only local communication and low-order computation by a distributed iterate collapse inversion (DICI) algorithm. We fuse the observations that are common among the local Kalman filters using bipartite fusion graphs and consensus averaging algorithms. The proposed algorithm achieves full distribution of the Kalman filter. Nowhere in the network, storage, communication, or computation of n-dimensional vectors and matrices is required; only nl Lt n dimensional vectors and matrices are communicated or used in the local computations at the sensors. In other words, knowledge of the state is itself distributed.

[1]  F. Gantmakher,et al.  Sur les matrices complètement non négatives et oscillatoires , 1937 .

[2]  J. Durbin EFFICIENT ESTIMATION OF PARAMETERS IN MOVING-AVERAGE MODELS , 1959 .

[3]  R. E. Kalman,et al.  New Results in Linear Filtering and Prediction Theory , 1961 .

[4]  E. Cuthill,et al.  Reducing the bandwidth of sparse symmetric matrices , 1969, ACM '69.

[5]  Fred C. Schweppe,et al.  Uncertain dynamic systems , 1973 .

[6]  D. Staelin,et al.  An Extended Kalman-Bucy Filter for Atmospheric Temperature Profile Retrieval with a Passive Microwave Sounder , 1978 .

[7]  R. Nash,et al.  Statistical geodesy—An engineering perspective , 1978, Proceedings of the IEEE.

[8]  Jason Speyer,et al.  Computation and transmission requirements for a decentralized linear-quadratic-Gaussian control problem , 1978, 1978 IEEE Conference on Decision and Control including the 17th Symposium on Adaptive Processes.

[9]  W. Barrett,et al.  Gaussian families and a theorem on patterned matrices , 1978 .

[10]  R. Brammer Estimation of the ocean geoid near the Blake Escarpment using Geos 3 satellite altimetry data , 1979 .

[11]  Alexander Graham,et al.  Kronecker Products and Matrix Calculus: With Applications , 1981 .

[12]  A.R. Bergen,et al.  A Structure Preserving Model for Power System Stability Analysis , 1981, IEEE Transactions on Power Apparatus and Systems.

[13]  A. Willsky,et al.  Combining and updating of local estimates and regional maps along sets of one-dimensional tracks , 1982 .

[14]  J. Pasciak,et al.  Computer solution of large sparse positive definite systems , 1982 .

[15]  Charles R. Johnson,et al.  Positive definite completions of partial Hermitian matrices , 1984 .

[16]  Gilbert Strang,et al.  Introduction to applied mathematics , 1988 .

[17]  Sumit Roy,et al.  Decentralized structures for parallel Kalman filtering , 1988 .

[18]  D. Hill On the equilibria of power systems with nonlinear loads , 1989 .

[19]  John N. Tsitsiklis,et al.  Parallel and distributed computation , 1989 .

[20]  J. Garloff Block methods for the solution of linear interval equations , 1990 .

[21]  T. M. Berg,et al.  Model Distribution in Decentralized Multi-Sensor Data Fusion , 1991, 1991 American Control Conference.

[22]  H. F. Durrant-Whyte,et al.  Fully decentralised algorithm for multisensor Kalman filtering , 1991 .

[23]  D. Siljak,et al.  A Block-Parallel Newton Method via Overlapping Epsilon Decompositions , 1992, 1992 American Control Conference.

[24]  T. M. Chin,et al.  Sequential filtering for multi-frame visual reconstruction , 1992, Signal Process..

[25]  N. Balram,et al.  Noncausal Gauss Markov random fields: Parameter structure and estimation , 1993, IEEE Trans. Inf. Theory.

[26]  D. Siljak,et al.  A Block-Parallel Newton Method Via OverlappingEpsilon Decompositions , 1994 .

[27]  Simultaneous recursive displacement estimation and restoration of noisy-blurred image sequences , 1995, IEEE Trans. Image Process..

[28]  Petros G. Voulgaris,et al.  On optimal ℓ∞ to ℓ∞ filtering , 1995, Autom..

[29]  D. Siljak,et al.  Overlapping block-laterative methods for solving algebraic equations , 1995 .

[30]  Eugenius Kaszkurewicz,et al.  Parallel Asynchronous Team Algorithms: Convergence and Performance Analysis , 1996, IEEE Trans. Parallel Distributed Syst..

[31]  Patrick R. Amestoy,et al.  An Approximate Minimum Degree Ordering Algorithm , 1996, SIAM J. Matrix Anal. Appl..

[32]  Arthur G. O. Mutambara,et al.  Decentralized Estimation and Control for Multisensor Systems , 2019 .

[33]  Dara Entekhabi,et al.  Tests of sequential data assimilation for retrieving profile soil moisture and temperature from observed L-band radiobrightness , 1999, IEEE Trans. Geosci. Remote. Sens..

[34]  José M. F. Moura,et al.  Matrices with banded inverses: Inversion algorithms and factorization of Gauss-Markov processes , 2000, IEEE Trans. Inf. Theory.

[35]  Dusan M. Stipanovic,et al.  Jacobi and Gauss-Seidel Iterations for Polytopic Systems: Convergence via Convex M-Matrices , 2000, Reliab. Comput..

[36]  T. Başar,et al.  A New Approach to Linear Filtering and Prediction Problems , 2001 .

[37]  Béla Bollobás,et al.  Modern Graph Theory , 2002, Graduate Texts in Mathematics.

[38]  José M. F. Moura,et al.  Inversion of Block Matrices with L-Block Banded Inverse , 2002 .

[39]  P. Malanotte‐Rizzoli,et al.  Estimation of the tropical Atlantic circulation from altimetry data using a reduced-rank stationary Kalman filter , 2003 .

[40]  Alan S. Willsky,et al.  A generalized Levinson algorithm for covariance extension with application to multiscale autoregressive modeling , 2003, IEEE Trans. Inf. Theory.

[41]  P. Malanotte‐Rizzoli,et al.  Reduced‐rank Kalman filters applied to an idealized model of the wind‐driven ocean circulation , 2003 .

[42]  Jay Apt,et al.  Electrical Blackouts: A Systemic Problem , 2004 .

[43]  Stephen P. Boyd,et al.  Fast linear iterations for distributed averaging , 2003, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475).

[44]  R.M. Murray,et al.  On a decentralized active sensing strategy using mobile sensor platforms in a network , 2004, 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601).

[45]  Bruno Sinopoli,et al.  Kalman filtering with intermittent observations , 2004, IEEE Transactions on Automatic Control.

[46]  Stephen P. Boyd,et al.  at 1 , 2004 .

[47]  José M. F. Moura,et al.  Estimation in sensor networks: a graph approach , 2005, IPSN 2005. Fourth International Symposium on Information Processing in Sensor Networks, 2005..

[48]  J.M.F. Moura,et al.  Distributed Detection in Sensor Networks: Connectivity Graph and Small World Networks , 2005, Conference Record of the Thirty-Ninth Asilomar Conference onSignals, Systems and Computers, 2005..

[49]  José M. F. Moura,et al.  Block matrices with L-block-banded inverse: inversion algorithms , 2005, IEEE Transactions on Signal Processing.

[50]  R. Olfati-Saber,et al.  Consensus Filters for Sensor Networks and Distributed Sensor Fusion , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[51]  Marija D. Ilic,et al.  Preventing Future Blackouts by Means of Enhanced Electric Power Systems Control: From Complexity to Order , 2005, Proceedings of the IEEE.

[52]  G. Golub,et al.  A bibliography on semiseparable matrices* , 2005 .

[53]  Paul W. Fieguth,et al.  Statistical processing of large image sequences , 2005, IEEE Transactions on Image Processing.

[54]  R. Olfati-Saber,et al.  Distributed Kalman Filter with Embedded Consensus Filters , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[55]  M. Alanyali,et al.  Distributed tracking in multi-hop networks with communication delays and packet losses , 2005, IEEE/SP 13th Workshop on Statistical Signal Processing, 2005.

[56]  Richard G. Baraniuk,et al.  Robust Distributed Estimation Using the Embedded Subgraphs Algorithm , 2006, IEEE Transactions on Signal Processing.

[57]  J. Moura,et al.  Topology for Global Average Consensus , 2006, 2006 Fortieth Asilomar Conference on Signals, Systems and Computers.

[58]  V. Saligrama,et al.  Reliable Distributed Estimation with Intermittent Communications , 2006, Proceedings of the 45th IEEE Conference on Decision and Control.

[59]  J. Moura,et al.  Model Distribution for Distributed Kalman Filters: A Graph Theoretic Approach , 2007, 2007 Conference Record of the Forty-First Asilomar Conference on Signals, Systems and Computers.

[60]  José M. F. Moura,et al.  Distributed Kalman Filters in Sensor Networks: Bipartite Fusion Graphs , 2007, 2007 IEEE/SP 14th Workshop on Statistical Signal Processing.

[61]  Nader Motee,et al.  Optimal Control of Spatially Distributed Systems , 2008, 2007 American Control Conference.

[62]  José M. F. Moura,et al.  Distributed iterate-collapse inversion (DICI) algorithm for L-banded matrices , 2008, 2008 IEEE International Conference on Acoustics, Speech and Signal Processing.

[63]  Soummya Kar,et al.  Sensor Networks With Random Links: Topology Design for Distributed Consensus , 2007, IEEE Transactions on Signal Processing.

[64]  A. Jadbabaie,et al.  Optimal Control of Spatially Distributed Systems , 2008, IEEE Transactions on Automatic Control.

[65]  M.D. Ilic,et al.  Modeling future cyber-physical energy systems , 2008, 2008 IEEE Power and Energy Society General Meeting - Conversion and Delivery of Electrical Energy in the 21st Century.

[66]  Ruggero Carli,et al.  Distributed Kalman filtering based on consensus strategies , 2008, IEEE Journal on Selected Areas in Communications.