Analysis of two- and three-dimensional fractional-order Hindmarsh-Rose type neuronal models

Abstract A theoretical analysis of two- and three-dimensional fractional-order Hindmarsh-Rose neuronal models is presented, focusing on stability properties and occurrence of Hopf bifurcations, with respect to the fractional order of the system chosen as bifurcation parameter. With the aim of exemplifying and validating the theoretical results, numerical simulations are also undertaken, which reveal rich bursting behavior in the three-dimensional fractional-order slow-fast system.

[1]  J. Klafter,et al.  The random walk's guide to anomalous diffusion: a fractional dynamics approach , 2000 .

[2]  John Guckenheimer,et al.  The singular limit of a Hopf bifurcation , 2012 .

[3]  Ying Wu,et al.  Firing properties and synchronization rate in fractional-order Hindmarsh-Rose model neurons , 2014 .

[4]  Enno de Lange,et al.  The Hindmarsh-Rose neuron model: bifurcation analysis and piecewise-linear approximations. , 2008, Chaos.

[5]  Changpin Li,et al.  Fractional dynamical system and its linearization theorem , 2013 .

[6]  R. FitzHugh Impulses and Physiological States in Theoretical Models of Nerve Membrane. , 1961, Biophysical journal.

[7]  H. Srivastava,et al.  Theory and Applications of Fractional Differential Equations , 2006 .

[8]  N. Ford,et al.  A Predictor-Corrector Approach for the Numerical Solution of Fractional Differential Equations , 2013 .

[9]  M. Ichise,et al.  An analog simulation of non-integer order transfer functions for analysis of electrode processes , 1971 .

[10]  I. Podlubny Fractional differential equations , 1998 .

[11]  D. Matignon Stability results for fractional differential equations with applications to control processing , 1996 .

[12]  Andrey Shilnikov,et al.  Methods of the Qualitative Theory for the Hindmarsh-rose Model: a Case Study - a Tutorial , 2008, Int. J. Bifurc. Chaos.

[13]  Min Shi,et al.  Abundant bursting patterns of a fractional-order Morris-Lecar neuron model , 2014, Commun. Nonlinear Sci. Numer. Simul..

[14]  Mario Di Paola,et al.  A novel exact representation of stationary colored Gaussian processes (fractional differential approach) , 2010, 1303.1327.

[15]  N. Engheia On the role of fractional calculus in electromagnetic theory , 1997 .

[16]  C. Morris,et al.  Voltage oscillations in the barnacle giant muscle fiber. , 1981, Biophysical journal.

[17]  A. Fairhall,et al.  Fractional differentiation by neocortical pyramidal neurons , 2008, Nature Neuroscience.

[18]  John Rinzel,et al.  Bursting oscillations in an excitable membrane model , 1985 .

[19]  M. I. Shehata,et al.  On stability, persistence, and Hopf bifurcation in fractional order dynamical systems , 2008, 0801.1189.

[20]  Hiroshi Kawakami,et al.  Bifurcations in Two-Dimensional Hindmarsh-rose Type Model , 2007, Int. J. Bifurc. Chaos.

[21]  F. Mainardi Fractional Relaxation-Oscillation and Fractional Diffusion-Wave Phenomena , 1996 .

[22]  Nobumasa Sugimoto Burgers equation with a fractional derivative; hereditary effects on nonlinear acoustic waves , 1991, Journal of Fluid Mechanics.

[23]  R. Genesio,et al.  On the dynamics of chaotic spiking-bursting transition in the Hindmarsh-Rose neuron. , 2009, Chaos.

[24]  Dong Jun,et al.  Dynamic behavior analysis of fractional-order Hindmarsh–Rose neuronal model , 2013, Cognitive Neurodynamics.

[25]  Thomas J. Anastasio,et al.  The fractional-order dynamics of brainstem vestibulo-oculomotor neurons , 1994, Biological Cybernetics.

[26]  V. Lakshmikantham,et al.  Theory of Fractional Dynamic Systems , 2009 .

[27]  A. Hodgkin,et al.  A quantitative description of membrane current and its application to conduction and excitation in nerve , 1990 .

[28]  Alessandro Torcini,et al.  Dynamical phases of the Hindmarsh-Rose neuronal model: studies of the transition from bursting to spiking chaos. , 2007, Chaos.

[29]  N. Heymans,et al.  Fractal rheological models and fractional differential equations for viscoelastic behavior , 1994 .

[30]  S. Wearne,et al.  Existence of Turing Instabilities in a Two-Species Fractional Reaction-Diffusion System , 2002, SIAM J. Appl. Math..

[31]  J. Hindmarsh,et al.  A model of the nerve impulse using two first-order differential equations , 1982, Nature.

[32]  O. Bolotina,et al.  On stability of the , 2003 .